我是靠谱客的博主 追寻战斗机,最近开发中收集的这篇文章主要介绍tensorfow实现DeepFM,模型保存、部署并java请求调用(ctr预测),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

前段时间看到知乎上推了一篇文章https://zhuanlan.zhihu.com/p/33699909 ,上面是实现wider&&deep、deepfm、pnn之类的深度学习在ctr上的应用,模型原理都比较简单;数据来源于kaggle比赛的ctr模型,我具体没细看,这里我使用随机生成的数据做test,原githup博客代码全部用python2.7版本来写,切换到3有一些bug要稍微改一下,下面我放的代码就是用3写的,原来githup中预测用c++写的,我用java,其中我挑DeepFM算法重新搞了一下,其余算法大同小异,在java中调用的话,框架是用的tensorflow高阶接口estimator相关的,在这里我要先说明下,原来用这个接口保存为pb格式的模型文件要先保存为checkpoint的形式,废话不多说,直接看代码,   java环境1.8,python环境3.6


首先是libsvm格式数据生成java代码,我用数字特征为5个,字符特征为3个,one-hot之后总计为39个特征:

package com.meituan.test;

import java.io.BufferedWriter;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.util.Random;


public class LibSvmUtils {
	public final static String TrainPATH = "click/train.txt";
	public final static String TestPATH = "click/test.txt";
	public final static String VAPATH = "click/va.txt";


	public static void main(String[] args) throws IOException {
		genatartelibsvm(TrainPATH, 20000);
		genatartelibsvm(TestPATH, 2000);
		genatartelibsvm(VAPATH, 200);


	}

	public static void genatartelibsvm(String trainpath, int count) throws IOException {
		StringBuffer sb = null;
		Random random = new Random();
		BufferedWriter bf = new BufferedWriter(new OutputStreamWriter(
				new FileOutputStream(trainpath)));
		/**
		 * 
		 * 总共field是8个,其中数值是5个,分类形状是3个,总估计特征39个
		 * **/
		for (int i = 0; i < count; i++) {
			sb = new StringBuffer();
			int featureidx=1;

			/**
			 * 产生label
			 * */
			sb.append(random.nextInt(2)).append(" ");

			/**
			 * 产生数字特征 5个
			 * */

			for (int j = 0; j < 5; j++) {
				sb.append(featureidx+":"+Math.random()).append(" ");
				featureidx+=1;
			}
			/**
			 * 字符特征 5个, 此时featureidx等于6,从6开始算
			 * */
			int featureidxa=featureidx;
			sb.append(featureidxa+random.nextInt(18)+":1").append(" ");
			
			/**
			 * 前面已经有23个,特征这一步从24算起,6+18 
			 * */
			int featureidxb=featureidx+18;
			sb.append(featureidxb + random.nextInt(10)+":1").append(" ");
			
			/**
			 * 前面已经有33个,特征这一步从34算起,总共估计39个特征
			 * */
			int featureidxc=featureidx+18+10;

			sb.append(featureidxc+ random.nextInt(5)+":1").append("n");

			bf.write(sb.toString());
		}
		bf.close();
	}

}

tensorflow的模型代码:

"""
#1 Input pipline using Dataset high level API, Support parallel and prefetch reading
#2 Train pipline using Coustom Estimator by rewriting model_fn
#3 Support distincted training using TF_CONFIG
#4 Support export_model for TensorFlow Serving
方便迁移到其他算法上,只要修改input_fn and model_fn
by lambdaji
"""
#from __future__ import absolute_import
#from __future__ import division
#from __future__ import print_function

#import argparse
import shutil
#import sys
import os
import json
import glob
from datetime import date, timedelta
from time import time
#import gc
#from multiprocessing import Process

#import math
import random
import pandas as pd
import numpy as np
import tensorflow as tf

#################### CMD Arguments ####################
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer("dist_mode", 0, "distribuion mode {0-loacal, 1-single_dist, 2-multi_dist}")
tf.app.flags.DEFINE_string("ps_hosts", '', "Comma-separated list of hostname:port pairs")
tf.app.flags.DEFINE_string("worker_hosts", '', "Comma-separated list of hostname:port pairs")
tf.app.flags.DEFINE_string("job_name", '', "One of 'ps', 'worker'")
tf.app.flags.DEFINE_integer("task_index", 0, "Index of task within the job")
tf.app.flags.DEFINE_integer("num_threads", 16, "Number of threads")
tf.app.flags.DEFINE_integer("feature_size", 0, "Number of features")
tf.app.flags.DEFINE_integer("field_size", 0, "Number of fields")
tf.app.flags.DEFINE_integer("embedding_size", 32, "Embedding size")
tf.app.flags.DEFINE_integer("num_epochs", 10, "Number of epochs")
tf.app.flags.DEFINE_integer("batch_size", 64, "Number of batch size")
tf.app.flags.DEFINE_integer("log_steps", 1000, "save summary every steps")
tf.app.flags.DEFINE_float("learning_rate", 0.0005, "learning rate")
tf.app.flags.DEFINE_float("l2_reg", 0.0001, "L2 regularization")
tf.app.flags.DEFINE_string("loss_type", 'log_loss', "loss type {square_loss, log_loss}")
tf.app.flags.DEFINE_string("optimizer", 'Adam', "optimizer type {Adam, Adagrad, GD, Momentum}")
tf.app.flags.DEFINE_string("deep_layers", '256,128,64', "deep layers")
tf.app.flags.DEFINE_string("dropout", '0.5,0.5,0.5', "dropout rate")
tf.app.flags.DEFINE_boolean("batch_norm", False, "perform batch normaization (True or False)")
tf.app.flags.DEFINE_float("batch_norm_decay", 0.9, "decay for the moving average(recommend trying decay=0.9)")
tf.app.flags.DEFINE_string("data_dir", '', "data dir")
tf.app.flags.DEFINE_string("dt_dir", '', "data dt partition")
tf.app.flags.DEFINE_string("model_dir", 'tensorflow/', "model check point dir")
tf.app.flags.DEFINE_string("servable_model_dir", 'servermodel/', "export servable model for TensorFlow Serving")
tf.app.flags.DEFINE_string("task_type", 'train', "task type {train, infer, eval, export}")
tf.app.flags.DEFINE_boolean("clear_existing_model", False, "clear existing model or not")

#1 1:0.5 2:0.03519 3:1 4:0.02567 7:0.03708 8:0.01705 9:0.06296 10:0.18185 11:0.02497 12:1 14:0.02565 15:0.03267 17:0.0247 18:0.03158 20:1 22:1 23:0.13169 24:0.02933 27:0.18159 31:0.0177 34:0.02888 38:1 51:1 63:1 132:1 164:1 236:1
def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
    print('Parsing', filenames)
    def decode_libsvm(line):
        #columns = tf.decode_csv(value, record_defaults=CSV_COLUMN_DEFAULTS)
        #features = dict(zip(CSV_COLUMNS, columns))
        #labels = features.pop(LABEL_COLUMN)
        columns = tf.string_split([line], ' ')
        labels = tf.string_to_number(columns.values[0], out_type=tf.float32)
        splits = tf.string_split(columns.values[1:], ':')
        id_vals = tf.reshape(splits.values,splits.dense_shape)
        feat_ids, feat_vals = tf.split(id_vals,num_or_size_splits=2,axis=1)
        feat_ids = tf.string_to_number(feat_ids, out_type=tf.int32)
        feat_vals = tf.string_to_number(feat_vals, out_type=tf.float32)
        return {"feat_ids": feat_ids, "feat_vals": feat_vals}, labels
    dataset = tf.data.TextLineDataset(filenames).map(decode_libsvm, num_parallel_calls=10).prefetch(500000)
    if perform_shuffle:
        dataset = dataset.shuffle(buffer_size=256)

    # epochs from blending together.
    dataset = dataset.repeat(num_epochs)
    dataset = dataset.batch(batch_size) # Batch size to use
    iterator = dataset.make_one_shot_iterator()
    batch_features, batch_labels = iterator.get_next()
    #return tf.reshape(batch_ids,shape=[-1,field_size]), tf.reshape(batch_vals,shape=[-1,field_size]), batch_labels
    return batch_features, batch_labels

def model_fn(features, labels, mode, params):
    """Bulid Model function f(x) for Estimator."""
    #------hyperparameters----
    field_size = params["field_size"]
    feature_size = params["feature_size"]
    embedding_size = params["embedding_size"]
    l2_reg = params["l2_reg"]
    learning_rate = params["learning_rate"]
    #batch_norm_decay = params["batch_norm_decay"]
    #optimizer = params["optimizer"]
    layers = list(map(int, params["deep_layers"].split(',')))
    dropout = list(map(float, params["dropout"].split(',')))

    #------bulid weights------
    FM_B = tf.get_variable(name='fm_bias', shape=[1], initializer=tf.constant_initializer(0.0))
    FM_W = tf.get_variable(name='fm_w', shape=[feature_size], initializer=tf.glorot_normal_initializer())
    FM_V = tf.get_variable(name='fm_v', shape=[feature_size, embedding_size], initializer=tf.glorot_normal_initializer())

    #------build feaure-------
    feat_ids  = features['feat_ids']
    feat_ids = tf.reshape(feat_ids,shape=[-1,field_size])
    feat_vals = features['feat_vals']
    feat_vals = tf.reshape(feat_vals,shape=[-1,field_size])

    #------build f(x)------
    with tf.variable_scope("First-order"):
        feat_wgts = tf.nn.embedding_lookup(FM_W, feat_ids) # None * F * 1
        y_w = tf.reduce_sum(tf.multiply(feat_wgts, feat_vals),1)

    with tf.variable_scope("Second-order"):
        embeddings = tf.nn.embedding_lookup(FM_V, feat_ids) # None * F * K
        feat_vals = tf.reshape(feat_vals, shape=[-1, field_size, 1])
        embeddings = tf.multiply(embeddings, feat_vals) #vij*xi
        sum_square = tf.square(tf.reduce_sum(embeddings,1))
        square_sum = tf.reduce_sum(tf.square(embeddings),1)
        y_v = 0.5*tf.reduce_sum(tf.subtract(sum_square, square_sum),1)	# None * 1

    with tf.variable_scope("Deep-part"):
        if FLAGS.batch_norm:
            #normalizer_fn = tf.contrib.layers.batch_norm
            #normalizer_fn = tf.layers.batch_normalization
            if mode == tf.estimator.ModeKeys.TRAIN:
                train_phase = True
                #normalizer_params = {'decay': batch_norm_decay, 'center': True, 'scale': True, 'updates_collections': None, 'is_training': True, 'reuse': None}
            else:
                train_phase = False
                #normalizer_params = {'decay': batch_norm_decay, 'center': True, 'scale': True, 'updates_collections': None, 'is_training': False, 'reuse': True}
        else:
            normalizer_fn = None
            normalizer_params = None

        deep_inputs = tf.reshape(embeddings,shape=[-1,field_size*embedding_size]) # None * (F*K)
        for i in range(len(layers)):
            #if FLAGS.batch_norm:
            #    deep_inputs = batch_norm_layer(deep_inputs, train_phase=train_phase, scope_bn='bn_%d' %i)
                #normalizer_params.update({'scope': 'bn_%d' %i})
            deep_inputs = tf.contrib.layers.fully_connected(inputs=deep_inputs, num_outputs=layers[i], 
                #normalizer_fn=normalizer_fn, normalizer_params=normalizer_params, 
                weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg), scope='mlp%d' % i)
            if FLAGS.batch_norm:
                deep_inputs = batch_norm_layer(deep_inputs, train_phase=train_phase, scope_bn='bn_%d' %i)   #放在RELU之后 https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
            if mode == tf.estimator.ModeKeys.TRAIN:
                deep_inputs = tf.nn.dropout(deep_inputs, keep_prob=dropout[i])                              #Apply Dropout after all BN layers and set dropout=0.8(drop_ratio=0.2)
                #deep_inputs = tf.layers.dropout(inputs=deep_inputs, rate=dropout[i], training=mode == tf.estimator.ModeKeys.TRAIN)

        y_deep = tf.contrib.layers.fully_connected(inputs=deep_inputs, num_outputs=1, activation_fn=tf.identity, 
                weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg), scope='deep_out')
        y_d = tf.reshape(y_deep,shape=[-1])
    with tf.variable_scope("DeepFM-out"):
        y_bias = FM_B * tf.ones_like(y_d, dtype=tf.float32)     # None * 1
        y = y_bias + y_w + y_v + y_d
        pred = tf.sigmoid(y)

    predictions={"prob": pred}
    export_outputs = {tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: tf.estimator.export.PredictOutput(predictions)}
    # Provide an estimator spec for `ModeKeys.PREDICT`
    if mode == tf.estimator.ModeKeys.PREDICT:
        return tf.estimator.EstimatorSpec(
                mode=mode,
                predictions=predictions,
                export_outputs=export_outputs)

    #------bulid loss------
    loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=y, labels=labels)) + 
        l2_reg * tf.nn.l2_loss(FM_W) + 
        l2_reg * tf.nn.l2_loss(FM_V) #+  l2_reg * tf.nn.l2_loss(sig_wgts)

    # Provide an estimator spec for `ModeKeys.EVAL`
    eval_metric_ops = {
        "auc": tf.metrics.auc(labels, pred)
    }
    if mode == tf.estimator.ModeKeys.EVAL:
        return tf.estimator.EstimatorSpec(
                mode=mode,
                predictions=predictions,
                loss=loss,
                eval_metric_ops=eval_metric_ops)

    #------bulid optimizer------
    if FLAGS.optimizer == 'Adam':
        optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-8)
    elif FLAGS.optimizer == 'Adagrad':
        optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate, initial_accumulator_value=1e-8)
    elif FLAGS.optimizer == 'Momentum':
        optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.95)
    elif FLAGS.optimizer == 'ftrl':
        optimizer = tf.train.FtrlOptimizer(learning_rate)

    train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())

    # Provide an estimator spec for `ModeKeys.TRAIN` modes
    if mode == tf.estimator.ModeKeys.TRAIN:
        return tf.estimator.EstimatorSpec(
                mode=mode,
                predictions=predictions,
                loss=loss,
                train_op=train_op)

def batch_norm_layer(x, train_phase, scope_bn):
    bn_train = tf.contrib.layers.batch_norm(x, decay=FLAGS.batch_norm_decay, center=True, scale=True, updates_collections=None, is_training=True,  reuse=None, scope=scope_bn)
    bn_infer = tf.contrib.layers.batch_norm(x, decay=FLAGS.batch_norm_decay, center=True, scale=True, updates_collections=None, is_training=False, reuse=True, scope=scope_bn)
    z = tf.cond(tf.cast(train_phase, tf.bool), lambda: bn_train, lambda: bn_infer)
    return z

def set_dist_env():
    if FLAGS.dist_mode == 1:        # 本地分布式测试模式1 chief, 1 ps, 1 evaluator
        ps_hosts = FLAGS.ps_hosts.split(',')
        chief_hosts = FLAGS.chief_hosts.split(',')
        task_index = FLAGS.task_index
        job_name = FLAGS.job_name
        print('ps_host', ps_hosts)
        print('chief_hosts', chief_hosts)
        print('job_name', job_name)
        print('task_index', str(task_index))
        # 无worker参数
        tf_config = {
            'cluster': {'chief': chief_hosts, 'ps': ps_hosts},
            'task': {'type': job_name, 'index': task_index }
        }
        print(json.dumps(tf_config))
        os.environ['TF_CONFIG'] = json.dumps(tf_config)
    elif FLAGS.dist_mode == 2:      # 集群分布式模式
        ps_hosts = FLAGS.ps_hosts.split(',')
        worker_hosts = FLAGS.worker_hosts.split(',')
        chief_hosts = worker_hosts[0:1] # get first worker as chief
        worker_hosts = worker_hosts[2:] # the rest as worker
        task_index = FLAGS.task_index
        job_name = FLAGS.job_name
        print('ps_host', ps_hosts)
        print('worker_host', worker_hosts)
        print('chief_hosts', chief_hosts)
        print('job_name', job_name)
        print('task_index', str(task_index))
        # use #worker=0 as chief
        if job_name == "worker" and task_index == 0:
            job_name = "chief"
        # use #worker=1 as evaluator
        if job_name == "worker" and task_index == 1:
            job_name = 'evaluator'
            task_index = 0
        # the others as worker
        if job_name == "worker" and task_index > 1:
            task_index -= 2

        tf_config = {
            'cluster': {'chief': chief_hosts, 'worker': worker_hosts, 'ps': ps_hosts},
            'task': {'type': job_name, 'index': task_index }
        }
        print(json.dumps(tf_config))
        os.environ['TF_CONFIG'] = json.dumps(tf_config)

def main(_):
    #tr_files = glob.glob("%s/tr*libsvm" % FLAGS.data_dir)

    tr_files = FLAGS.data_dir+"train.txt"
    #random.shuffle(tr_files)
    print("tr_files:", tr_files)
    #va_files = glob.glob("%s/va*libsvm" % FLAGS.data_dir)
    va_files = FLAGS.data_dir + "va.txt"
    print("va_files:", va_files)
    #te_files = glob.glob("%s/te*libsvm" % FLAGS.data_dir)
    te_files = FLAGS.data_dir + "test.txt"
    print("te_files:", te_files)

    if FLAGS.clear_existing_model:
        try:
            shutil.rmtree(FLAGS.model_dir)
        except Exception as e:
            print(e, "at clear_existing_model")
        else:
            print("existing model cleaned at %s" % FLAGS.model_dir)

    set_dist_env()

    model_params = {
        "field_size": FLAGS.field_size,
        "feature_size": FLAGS.feature_size,
        "embedding_size": FLAGS.embedding_size,
        "learning_rate": FLAGS.learning_rate,
        "batch_norm_decay": FLAGS.batch_norm_decay,
        "l2_reg": FLAGS.l2_reg,
        "deep_layers": FLAGS.deep_layers,
        "dropout": FLAGS.dropout
    }
    config = tf.estimator.RunConfig().replace(session_config = tf.ConfigProto(device_count={'GPU':0, 'CPU':FLAGS.num_threads}),
            log_step_count_steps=FLAGS.log_steps, save_summary_steps=FLAGS.log_steps)
    DeepFM = tf.estimator.Estimator(model_fn=model_fn, model_dir=FLAGS.model_dir, params=model_params, config=config)

    if FLAGS.task_type == 'train':
        train_spec = tf.estimator.TrainSpec(input_fn=lambda: input_fn(tr_files, num_epochs=FLAGS.num_epochs, batch_size=FLAGS.batch_size))
        eval_spec = tf.estimator.EvalSpec(input_fn=lambda: input_fn(va_files, num_epochs=1, batch_size=FLAGS.batch_size), steps=None, start_delay_secs=1000, throttle_secs=1200)
        tf.estimator.train_and_evaluate(DeepFM, train_spec, eval_spec)
    elif FLAGS.task_type == 'eval':
        DeepFM.evaluate(input_fn=lambda: input_fn(va_files, num_epochs=1, batch_size=FLAGS.batch_size))
    elif FLAGS.task_type == 'infer':
        preds = DeepFM.predict(input_fn=lambda: input_fn(te_files, num_epochs=1, batch_size=FLAGS.batch_size), predict_keys="prob")
        with open(FLAGS.data_dir+"/pred.txt", "w") as fo:
            for prob in preds:
                fo.write("%fn" % (prob['prob']))
    elif FLAGS.task_type == 'export':
        #feature_spec = tf.feature_column.make_parse_example_spec(feature_columns)
        #feature_spec = {
        #    'feat_ids': tf.FixedLenFeature(dtype=tf.int64, shape=[None, FLAGS.field_size]),
        #    'feat_vals': tf.FixedLenFeature(dtype=tf.float32, shape=[None, FLAGS.field_size])
        #}
        #serving_input_receiver_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec)
        feature_spec = {
            'feat_ids': tf.placeholder(dtype=tf.int64, shape=[None, FLAGS.field_size], name='feat_ids'),
            'feat_vals': tf.placeholder(dtype=tf.float32, shape=[None, FLAGS.field_size], name='feat_vals')
        }
        serving_input_receiver_fn = tf.estimator.export.build_raw_serving_input_receiver_fn(feature_spec)
        DeepFM.export_savedmodel(FLAGS.servable_model_dir, serving_input_receiver_fn)

if __name__ == "__main__":
    #------check Arguments------
    if FLAGS.dt_dir == "":
        FLAGS.dt_dir = (date.today() + timedelta(-1)).strftime('%Y%m%d')
    FLAGS.model_dir = FLAGS.model_dir + FLAGS.dt_dir
    #FLAGS.data_dir  = FLAGS.data_dir + FLAGS.dt_dir

    print('task_type ', FLAGS.task_type)
    print('model_dir ', FLAGS.model_dir)
    print('data_dir ', FLAGS.data_dir)
    print('dt_dir ', FLAGS.dt_dir)
    print('num_epochs ', FLAGS.num_epochs)
    print('feature_size ', FLAGS.feature_size)
    print('field_size ', FLAGS.field_size)
    print('embedding_size ', FLAGS.embedding_size)
    print('batch_size ', FLAGS.batch_size)
    print('deep_layers ', FLAGS.deep_layers)
    print('dropout ', FLAGS.dropout)
    print('loss_type ', FLAGS.loss_type)
    print('optimizer ', FLAGS.optimizer)
    print('learning_rate ', FLAGS.learning_rate)
    print('batch_norm_decay ', FLAGS.batch_norm_decay)
    print('batch_norm ', FLAGS.batch_norm)
    print('l2_reg ', FLAGS.l2_reg)

    tf.logging.set_verbosity(tf.logging.INFO)
    tf.app.run()

模型训练以及保存为pb格式代码,训练过程会先checkpoint,然后再保存:

python3 DeepFM.py --task_type=train --learning_rate=0.0005 --optimizer=Adam --num_epochs=1 --batch_size=256 --field_size=8 --feature_size=39 --deep_layers=400,400,400 --dropout=0.5,0.5,0.5 --log_steps=1000 --num_threads=8 --model_dir=tensorflow/  --data_dir=data/
python3 DeepFM.py --task_type=export --learning_rate=0.0005 --optimizer=Adam --batch_size=256 --field_size=8 --feature_size=39 --deep_layers=400,400,400 --dropout=0.5,0.5,0.5 --log_steps=1000 --num_threads=8 --model_dir=tensorflow/ --servable_model_dir=servermodel/

tensorflow-serving命令:

bazel-bin/tensorflow_serving/model_servers/tensorflow_model_server --port=9000  --model_base_path=/Users/shuubiasahi/Desktop/modelserving

java中调请求serving返回结果:

package org.ranksys.javafm.example;

import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import org.tensorflow.framework.DataType;
import org.tensorflow.framework.TensorProto;
import org.tensorflow.framework.TensorShapeProto;

import io.grpc.ManagedChannel;
import io.grpc.ManagedChannelBuilder;
import tensorflow.serving.Model;
import tensorflow.serving.Predict;
import tensorflow.serving.PredictionServiceGrpc;

public class DeepFMPrediction {
	public static void main(String[] args) {
		List<Integer> ids_vec = Arrays.asList(1, 2, 3, 4, 5, 13, 31, 38);

		List<Float> vals_vec = Arrays.asList(0.076f, 0.796f, 0.4707f, 0.21f,
				0.83f, 1.0f, 1.0f, 1.0f);

		ManagedChannel channel = ManagedChannelBuilder
				.forAddress("0.0.0.0", 9000).usePlaintext(true).build();
		// 这里还是先用block模式
		PredictionServiceGrpc.PredictionServiceBlockingStub stub = PredictionServiceGrpc
				.newBlockingStub(channel);
		// 创建请求
		Predict.PredictRequest.Builder predictRequestBuilder = Predict.PredictRequest
				.newBuilder();
		// 模型名称和模型方法名预设
		Model.ModelSpec.Builder modelSpecBuilder = Model.ModelSpec.newBuilder();
		modelSpecBuilder.setName("default");
		modelSpecBuilder.setSignatureName("");
		predictRequestBuilder.setModelSpec(modelSpecBuilder);
		
		
		TensorShapeProto.Builder tensorShapeBuilder = TensorShapeProto.newBuilder();
		tensorShapeBuilder.addDim(TensorShapeProto.Dim.newBuilder().setSize(1));
		tensorShapeBuilder.addDim(TensorShapeProto.Dim.newBuilder().setSize(8));

		// 设置入参1
		TensorProto.Builder tensorids_ids = TensorProto.newBuilder();
		tensorids_ids.setDtype(DataType.DT_INT64);
		tensorids_ids.setTensorShape(tensorShapeBuilder.build());
		tensorids_ids.addAllIntVal(ids_vec);
		
		// 设置入参2
		
		TensorProto.Builder tensorids_val = TensorProto.newBuilder();
		tensorids_val.setDtype(DataType.DT_FLOAT);
		tensorids_val.setTensorShape(tensorShapeBuilder.build());
		tensorids_val.addAllFloatVal(vals_vec);
		
		Map<String, TensorProto>  map=new HashMap<String, TensorProto>();
		map.put("feat_ids", tensorids_ids.build());
		map.put("feat_vals", tensorids_val.build());
		
		predictRequestBuilder.putAllInputs(map);
		
		Predict.PredictResponse predictResponse = stub.predict(predictRequestBuilder.build());
		System.out.println(predictResponse);

	}

}


结果:



上述步骤有不懂可以随时联系我

最后

以上就是追寻战斗机为你收集整理的tensorfow实现DeepFM,模型保存、部署并java请求调用(ctr预测)的全部内容,希望文章能够帮你解决tensorfow实现DeepFM,模型保存、部署并java请求调用(ctr预测)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(44)

评论列表共有 0 条评论

立即
投稿
返回
顶部