概述
(一):逻辑地址(Logical Address)
指由程式产生的和段相关的偏移地址部分。例如,你在进行C语言指针编程中,能读取指针变量本身值(&操作),实际上这个值就是逻辑地址,他是相对于你当前进程数据段的地址,不和绝对物理地址相干。只有在Intel实模式下,逻辑地址才和物理地址相等(因为实模式没有分段或分页机制,Cpu不进行自动地址转换);逻辑也就是在Intel保护模式下程式执行代码段限长内的偏移地址(假定代码段、数据段如果完全相同)。应用程式员仅需和逻辑地址打交道,而分段和分页机制对你来说是完全透明的,仅由系统编程人员涉及。应用程式员虽然自己能直接操作内存,那也只能在操作系统给你分配的内存段操作。
(二):线性地址(Linear Address)
是逻辑地址到物理地址变换之间的中间层。程式代码会产生逻辑地址,或说是段中的偏移地址,加上相应段的基地址就生成了一个线性地址。如果启用了分页机制,那么线性地址能再经变换以产生一个物理地址。若没有启用分页机制,那么线性地址直接就是物理地址。Intel 80386的线性地址空间容量为4G(2的32次方即32根地址总线寻址)。
(三):物理地址(Physical Address)
指出目前CPU外部地址总线上的寻址物理内存的地址信号,是地址变换的最终结果地址。如果启用了分页机制,那么线性地址会使用页目录和页表中的项变换成物理地址。如果没有启用分页机制,那么线性地址就直接成为物理地址了。
(四):虚拟内存(Virtual Memory)
指计算机呈现出要比实际拥有的内存大得多的内存量。因此他允许程式员编制并运行比实际系统拥有的内存大得多的程式。这使得许多大型项目也能够在具有有限内存资源的系统上实现。一个非常恰当的比喻是:你不必非常长的轨道就能让一列火车从上海开到北京。你只需要足够长的铁轨(比如说3公里)就能完成这个任务。采取的方法是把后面的铁轨即时铺到火车的前面,只要你的操作足够快并能满足需求,列车就能象在一条完整的轨道上运行。这也就是虚拟内存管理需要完成的任务。拆东墙,补西墙,在Linux0.11内核中,给每个程式(进程)都划分了总容量为64MB的虚拟内存空间。因此程式的逻辑地址范围是0x0000000到0x4000000。有时我们也把逻辑地址称为 虚拟地址。因为和虚拟内存空间的概念类似,逻辑地址也是和实际物理内存容量无关的。逻辑地址和物理地址的“差距”是0xC0000000,是由于虚拟地址->线性地址->物理地址映射正好差这个值。这个值是由操作系统指定的。机理 逻辑地址(或称为虚拟地址)到线性地址是由CPU的段机制自动转换的。如果没有开启分页管理,则线性地址就是物理地址。如果开启了分页管理,那么系统程式需要参和线性地址到物理地址的转换过程。具体是通过设置页目录表和页表项进行的。
1段选择符
段选择符为16位。为了方便查找段选择符,CPU提供了段寄存器来存放段选择符。段寄存器有cs, ss, ds, es, fs, gs(为16位),主要的有cs:代码段寄存器。包含程序指令的段;ss:栈段寄存器。指向当前程序栈的段。ds:数据段。指向静态数据或者全局数据段。段选择符的字段如下图:
TI表示段描述符存放在GDT还是存放在LDT,0表示存放在GDT。1存放在LDT。 INDEX表示的是选择索引号。就是用此索引号来在GDT中检索相应的段描述符。 RPL(requested privilege level)表示的是请求者的特权级。
2全局描述符表GDT(Global Descriptor Table)在整个系统中,全局描述符表GDT只有一张(一个处理器对应一个GDT),GDT可以被放在内存的任何位置,但CPU必须知道GDT的入口,也就是基地址放在哪里,Intel的设计者门提供了一个寄存器GDTR用来存放GDT的入口地址,程序员将GDT设定在内存中某个位置之后,可以通过LGDT指令将GDT的入口地址装入此积存器,从此以后,CPU就根据此寄存器中的内容作为GDT的入口来访问GDT了。GDTR中存放的是GDT在内存中的基地址和其表长界限。GDTR是一个长度为48bit的寄存器,内容为一个32位的基地址和一个16位的段限。其中32位的基址是指GDT在内存中的地址。
3局部描述符表LDT(Local Descriptor Table)局部描述符表可以有若干张,每个任务可以有一张。我们可以这样理解GDT和LDT:GDT为一级描述符表,LDT为二级描述符表。LDT本身同样是一段内存,也是一个段,所以它也有个描述符描述它,这个描述符就存储在GDT中,对应这个描述符也会有一个选择符,LDTR装载的就是这样一个选择符。cpu在GDT中寻址LDT时,也需要使用选择符。LDTR是局部描述符寄存器,由一个可见的16位寄存器(存储段选择符)和一个不可见的描述符寄存器组成(描述符寄存器实际上是一个不可见的高速缓冲区)。当选择符被装入段寄存器时,cpu会自动将其对应的描述符装入描述符寄存器。系统任务切换时,LDT切换,而GDT不切换(因为真个系统只有一个GDT),这时新任务的LDT描述符的选择子就被装入到LDTR中。LDT不包含在GDT中。GDT中只是包含了LDT描述符(一个指向LDT起始地址的指针)。
注:IA-32为LDT的入口地址也提供了一个寄存器LDTR,因为在任何时刻只能有一个任务在运行,所以LDT寄存器全局也只需要有一个。如果一个任务拥有自身的LDT,那么当它需要引用自身的LDT时,它需要通过lldt指令将其LDT的段描述符装入此寄存器。lldt指令与lgdt指令不同的时,lgdt指令的操作数是一个32-bit的内存地址,这个内存地址处存放的是一个32-bit GDT的入口地址,以及16-bit的GDT Limit。而lldt指令的操作数是一个16-bit的选择子,这个选择子主要内容是:被装入的LDT的段描述符在GDT中的索引值
例子:
若给定一个逻辑地址是 a:b ,根据逻辑地址的a(段选择符)的T1位确定是选择GDT还是LDT。
a、若是T1位选择GDT,根据GDTR找到GDT的基址,根据a的 3~15位确定它的段描述符X在GDT中的位置(GDTR即基址+a的3-15bit即相对位置):确定段描述符X,再根据段描述符提取出其中包含的段基址信息,段基址+b(段内偏移),最终确定线性地址。
b、若是T1位选择LDT,根据GDTR找到GDT的基址,根据LDTR的高13位确定它的LDTX描述符在GDT中的位置(GDTR基址+LDTR13bit即相对位置):确定LDTX描述符。LDTX描述符可以确定LDT的基址(LDTX描述符确定LDT表在内存中的起始位置),再根据段选择符a确定的相对位置,可以确定LDT中的私有段描述符Y。接下来同上面的:再根据段描述符提取出其中包含的段基址信息,段基址+b(段内偏移),最终确定线性地址。
每个任务都有自己的页目录和页表. 在处理器中有个控制寄存器CR3, 存放着当前任务页目录的物理地址, 故又叫做页目录基址寄存器(Page Directory Base Register: PDBR). 每个任务都有自己的TSS, 其中就包括了CR3寄存器域, 存放了任务自己的页目录物理地址. 当任务切换时, 处理器切换到新任务开始执行, 而CR3寄存器的内容也被更新, 以指向新任务的页目录位置. 相应的, 页目录又指向一个个的页表, 这就使得每个任务都只在自己的地址空间内运行. 从下图可以看出, 页目录和页表也是普通的页, 混迹于全部的物理页中. 它们和普通页的不同支持仅仅在于功能不一样. 当任务撤销之后, 它们和任务所占用的普通页一样会被回收, 并分配给其他任务.
最后
以上就是激昂石头为你收集整理的内存分段机制与分页机制的全部内容,希望文章能够帮你解决内存分段机制与分页机制所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复