概述
1、一次二次多项式拟合
一次二次比较简单,直接使用numpy中的函数即可,polyfit(x, y, degree)。
2、指数幂数拟合curve_fit
使用scipy.optimize 中的curve_fit,幂数拟合例子如下:
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
import numpy as np
def func(x, a, b, c):
return a * np.exp(-b * x) + c
xdata = np.linspace(0, 4, 50)
y = func(xdata, 2.5, 1.3, 0.5)
ydata = y + 0.2 * np.random.normal(size=len(xdata))
plt.plot(xdata,ydata,'b-')
popt, pcov = curve_fit(func, xdata, ydata)
#popt数组中,三个值分别是待求参数a,b,c
y2 = [func(i, popt[0],popt[1],popt[2]) for i in xdata]
plt.plot(xdata,y2,'r--')
print popt
下面是原始数据和拟合曲线:
下面是指数拟合例子:
def fund(x, a, b):
return x**a + b
xdata = np.linspace(0, 4, 50)
y = fund(xdata, 2.5, 1.3)
ydata = y + 4 * np.random.normal(size=len(xdata))
plt.plot(xdata,ydata,'b-')
popt, pcov = curve_fit(fund, xdata, ydata)
#popt数组中,三个值分别是待求参数a,b,c
y2 = [fund(i, popt[0],popt[1]) for i in xdata]
plt.plot(xdata,y2,'r--')
print popt
下图是原始数据和拟合曲线:
以上这篇对python指数、幂数拟合curve_fit详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持易采站长站。
最后
以上就是甜美朋友为你收集整理的python幂指数_对python指数、幂数拟合curve_fit详解的全部内容,希望文章能够帮你解决python幂指数_对python指数、幂数拟合curve_fit详解所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复