我是靠谱客的博主 迷你咖啡豆,最近开发中收集的这篇文章主要介绍Matplotlib学习---用seaborn画矩阵图(pair plot),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

矩阵图非常有用,人们经常用它来查看多个变量之间的联系。

 

下面用著名的鸢尾花数据来画一个矩阵图。从sklearn导入鸢尾花数据,然后将其转换成pandas的DataFrame类型,最后用seaborn画图。(seaborn包里也有这个数据,也可以直接从seaborn包导入此数据)

 

矩阵图: sns.pairplot(data,hue=...)   ---   hue为data里的数据,用其来显示不同颜色

 

由于data需要的格式为每列是变量(在这里是鸢尾花的四个特征),每行则是各变量的观测数据,因此需要将从sklearn导入的初始数据转换格式。 数据转换好之后应如下所示(此处只截取部分):


sepal_length
sepal_width
petal_length
petal_width
species
0
5.1
3.5
1.4
0.2
setosa
1
4.9
3.0
1.4
0.2
setosa
2
4.7
3.2
1.3
0.2
setosa
3
4.6
3.1
1.5
0.2
setosa
4
5.0
3.6
1.4
0.2
setosa
5
5.4
3.9
1.7
0.4
setosa
6
4.6
3.4
1.4
0.3
setosa
..
...
...
...
...
...
120
6.9
3.2
5.7
2.3
virginica
121
5.6
2.8
4.9
2.0
virginica
122
7.7
2.8
6.7
2.0
virginica
123
6.3
2.7
4.9
1.8
virginica

 

完整代码如下:

import pandas as pd
from sklearn.datasets import load_iris
from matplotlib import pyplot as plt
import seaborn as sns
iris=load_iris()
d=pd.DataFrame(iris.data,columns=["sepal_length","sepal_width","petal_length","petal_width"])
d["species"]=iris.target #增加一列,为鸢尾花的类别

d.loc[d["species"]==0,"species"]="setosa" #把类别这一列数值为0的替换为setosa
d.loc[d["species"]==1,"species"]="versicolor" #把类别这一列数值为1的替换为versicolor
d.loc[d["species"]==2,"species"]="virginica" #把类别这一列数值为2的替换为virginica

sns.pairplot(d,hue="species")
plt.show()

 

 图像如下:

看第三行第四列的这幅图,可以看到petal_length和petal_width呈很强的正比关系。

 

seaborn官网上有更完整的示例,有兴趣可以查看:http://seaborn.pydata.org/generated/seaborn.pairplot.html。

 

转载于:https://www.cnblogs.com/HuZihu/p/9481091.html

最后

以上就是迷你咖啡豆为你收集整理的Matplotlib学习---用seaborn画矩阵图(pair plot)的全部内容,希望文章能够帮你解决Matplotlib学习---用seaborn画矩阵图(pair plot)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(54)

评论列表共有 0 条评论

立即
投稿
返回
顶部