概述
题意:给出一棵以1为根的有根树,边权全部为1,点权初始全部为0,给出m个查询,每个查询给出三个变量v d x,表示将v节点的子节点(包括自己)中与v之间的距离<=d的节点的点权增加x,问最后每个节点的点权是多少
1<=n<=3e5, 1<=m<=3e5,1<=v<=n, 1<=d, x<=1e9
思路:开一棵线段树表示某个深度上增加的值,这样在dfs到一个节点时,首先将它身上的查询更新一下,回溯时再将之前的更新取消就可以了
#include <bits/stdc++.h>
using namespace std;
const int maxn = 3e5 + 10;
typedef long long ll;
typedef pair<int, int> P;
int n, m;
int tot, head[maxn];
struct Edge { int to, next; }edges[maxn<<1];
vector<P> vec[maxn];
ll a[maxn<<2], lazy[maxn<<2], res[maxn];
void addedge(int u, int v) {
edges[tot].to = v; edges[tot].next = head[u]; head[u] = tot++;
}
void pushup(int root) {
a[root] = a[root<<1] + a[root<<1|1];
}
void pushdown(int root, int lenl, int lenr) {
if (lazy[root] == 0) return;
lazy[root<<1] += lazy[root];
lazy[root<<1|1] += lazy[root];
a[root<<1] += lazy[root]*lenl;
a[root<<1|1] += lazy[root]*lenr;
lazy[root] = 0;
}
void build(int l, int r, int root) {
a[root] = lazy[root] = 0;
if (l == r) return;
int mid = (l + r)>>1;
build(l, mid, root<<1);
build(mid+1, r, root<<1|1);
pushup(root);
}
void update(int l, int r, int root, int ul, int ur, int v) {
if (ul <= l && r <= ur) {
a[root] += v;
lazy[root] += v;
return;
}
int mid = (l + r)>>1;
pushdown(root, mid-l+1, r-mid);
if (ul <= mid) update(l, mid, root<<1, ul, ur, v);
if (mid < ur) update(mid+1, r, root<<1|1, ul, ur, v);
pushup(root);
}
ll query(int l, int r, int root, int p) {
if (l == r) return a[root];
int mid = (l + r)>>1;
pushdown(root, mid-l+1, r-mid);
if (p <= mid) return query(l, mid, root<<1, p);
else return query(mid+1, r, root<<1|1, p);
}
void dfs(int f, int u, int d) {
for (int i = 0; i < vec[u].size(); i++) {
update(1, n, 1, d, min(n, d+vec[u][i].first), vec[u][i].second);
}
res[u] = query(1, n, 1, d);
for (int i = head[u]; ~i; i = edges[i].next) {
int v = edges[i].to;
if (v == f) continue;
dfs(u, v, d+1);
}
for (int i = 0; i < vec[u].size(); i++) {
update(1, n, 1, d, min(n, d+vec[u][i].first), -vec[u][i].second);
}
}
int main() {
scanf("%d", &n);
tot = 0;
memset(head, -1, sizeof(head));
for (int i = 0; i < n-1; i++) {
int u, v;
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
}
scanf("%d", &m);
for (int i = 0; i <= n; i++) vec[i].clear();
for (int i = 0; i < m; i++) {
int v, d, x;
scanf("%d %d %d", &v, &d, &x);
vec[v].push_back(make_pair(d, x));
}
dfs(-1, 1, 1);
for (int i = 1; i <= n; i++) {
printf("%I64d", res[i]);
if (i == n) printf("n");
else printf(" ");
}
return 0;
}
最后
以上就是谦让香水为你收集整理的Codeforces 1076E——回溯的全部内容,希望文章能够帮你解决Codeforces 1076E——回溯所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复