概述
关于最短距离算法最多莫过于Dijkstra算法。能找到例子不多。书上能看到的代码大多数伪代码。
而在网上看到多代码大多是C或者C++版本,而且大多没有提供完整的代码。C#的版本也找不到,故偶自己写了些代码(权值无负值).
书上讲的Dijkstra算法看的不太懂,大致的意思是扩散求值的算法,即从源节点一步一步求最短路径的方法。即先找到源节点到其子节点的最短距离,然后再找源节点到其二级孙级点最短距离。如此一步一步直到扩散到目标节点为止。
先看下我构造的节点图,如下,一开始我是想求A-K的最短路径
以下我构造的一些类和方法
节点类:
///
/// 节点类
///
class GNode
{
public string Name ;
public List LD;
public int Rank;
public int MinDist = 0;
public string Path = "";
public bool BFind = false;
public GNode(string name) {
this.Name = name;
LD = new List();
Rank = -1;
}
///
/// 设置节点级别
///
///
public void SetRank(GNode parentNode)
{
if (Rank == -1)
{
if (parentNode != null)
Rank = parentNode.Rank + 1;
else
Rank = 0;
}
}
public int GetRank()
{
return Rank;
}
}
边类
///
/// 边类,此处为没有标明边的方向。
///
class DNode
{
string Name;
public int Distance;
public GNode CurrNode;
public DNode(string name,int dist) {
this.Name = name;
Distance = dist;
CurrNode = ht[name] as GNode;
}
}
初始化节点,以上代码中的ht为节点的Hashtable集合,节点信息都存放在Hashtable中
private void InitNodes()
{
///初始化
///
ht= new Hashtable();
GNode dnTemp = new GNode("A");
ht.Add("A", dnTemp);
dnTemp = new GNode("B");
ht.Add("B", dnTemp);
dnTemp = new GNode("C");
ht.Add("C", dnTemp);
dnTemp = new GNode("D");
ht.Add("D", dnTemp);
dnTemp = new GNode("E");
ht.Add("E", dnTemp);
dnTemp = new GNode("F");
ht.Add("F", dnTemp);
dnTemp = new GNode("G");
ht.Add("G", dnTemp);
dnTemp = new GNode("H");
ht.Add("H", dnTemp);
dnTemp = new GNode("I");
ht.Add("I", dnTemp);
dnTemp = new GNode("J");
ht.Add("J", dnTemp);
dnTemp = new GNode("K");
ht.Add("K", dnTemp);
dnTemp = new GNode("L");
ht.Add("L", dnTemp);
dnTemp = ht["A"] as GNode;
dnTemp.LD.Add(new DNode("B", 3));
dnTemp.LD.Add(new DNode("C", 5));
dnTemp.LD.Add(new DNode("D", 2));
dnTemp = ht["B"] as GNode;
dnTemp.LD.Add(new DNode("A", 3));
dnTemp.LD.Add(new DNode("C", 4));
dnTemp.LD.Add(new DNode("E", 10));
dnTemp = ht["C"] as GNode;
dnTemp.LD.Add(new DNode("A", 5));
dnTemp.LD.Add(new DNode("B", 4));
dnTemp.LD.Add(new DNode("D", 2));
dnTemp.LD.Add(new DNode("G", 6));
dnTemp.LD.Add(new DNode("F", 1));
dnTemp = ht["D"] as GNode;
dnTemp.LD.Add(new DNode("A", 2));
dnTemp.LD.Add(new DNode("C", 2));
dnTemp.LD.Add(new DNode("H", 3));
dnTemp = ht["E"] as GNode;
dnTemp.LD.Add(new DNode("B", 10));
dnTemp.LD.Add(new DNode("F", 4));
dnTemp.LD.Add(new DNode("I", 2));
dnTemp = ht["F"] as GNode;
dnTemp.LD.Add(new DNode("C", 1));
dnTemp.LD.Add(new DNode("E", 4));
dnTemp.LD.Add(new DNode("K", 8));
dnTemp.LD.Add(new DNode("L", 2));
dnTemp = ht["G"] as GNode;
dnTemp.LD.Add(new DNode("H", 8));
dnTemp.LD.Add(new DNode("C", 6));
dnTemp.LD.Add(new DNode("L", 2));
dnTemp = ht["H"] as GNode;
dnTemp.LD.Add(new DNode("G", 8));
dnTemp.LD.Add(new DNode("D", 3));
dnTemp = ht["I"] as GNode;
dnTemp.LD.Add(new DNode("J", 1));
dnTemp.LD.Add(new DNode("E", 2));
dnTemp.LD.Add(new DNode("K", 6));
dnTemp = ht["J"] as GNode;
dnTemp.LD.Add(new DNode("I", 1));
dnTemp.LD.Add(new DNode("K", 9));
dnTemp = ht["K"] as GNode;
dnTemp.LD.Add(new DNode("F", 8));
dnTemp.LD.Add(new DNode("I", 6));
dnTemp.LD.Add(new DNode("J", 9));
dnTemp.LD.Add(new DNode("L", 5));
dnTemp = ht["L"] as GNode;
dnTemp.LD.Add(new DNode("G", 2));
dnTemp.LD.Add(new DNode("F", 2));
dnTemp.LD.Add(new DNode("K", 5));
}
初始化各节点的相对于源节点的级别
///
/// 初始化点阵的Rank
///
///
private void InitRank(List srcs)
{
List nextNode=new List();
foreach (GNode src in srcs)
{
foreach (DNode dn in src.LD)
{
dn.CurrNode.SetRank(src);
if (dn.CurrNode.Rank == (src.Rank + 1) && !nextNode.Contains(dn.CurrNode))
nextNode.Add(dn.CurrNode);
}
}
if (nextNode.Count > 0)
InitRank(nextNode);
}
单点的最短路径递归方法
///
/// 寻找起始节点到目标节点的最小路径,此处采用递归查找。目标节点固定,起始节点递归。
///
/// 起始节点,为临时递归节点
/// 查找路径中的目标节点
/// 当前查找最小路径值,此值在递归中共享
/// 当前节点以src节点的距离
/// 源节点src的级别
/// 查找中经过的路径
///
private string FindMinx(GNode src,GNode dest,ref int minx,int startDist,int srcRank,string path)
{
// string[] paths=
int sRank = src.Rank;// dest.GetRank();
int tmpLength,tmpRank;
string tmpPath=null;
string goalPath="";
string tmpPath1,tmpPath2,tmpNodeName;
tmpPath1=","+path+",";
tmpPath2=","+src.Path+",";
foreach (DNode dn in src.LD)
{
tmpPath = path;
dn.CurrNode.SetRank(src);
tmpRank = dn.CurrNode.Rank;
tmpNodeName = "," + dn.CurrNode.Name + ",";
//扩散级别大于等于目标级别并且是未走过的节点。
// had delete tmpRank >= srcRank
//if (tmpRank >= srcRank && path.IndexOf(dn.CurrNode.Name) == -1 && src.Path.IndexOf(dn.CurrNode.Name)==-1)
if (tmpRank > srcRank && tmpPath1.IndexOf(tmpNodeName) == -1 && tmpPath2.IndexOf(tmpNodeName) == -1)
{
tmpLength = dn.Distance + startDist;
if (dn.CurrNode.Equals(dest))
{
if (minx > tmpLength)
{
minx = tmpLength;
tmpPath += "," + dn.CurrNode.Name;
goalPath = tmpPath;
}
else if (minx == tmpLength)
{
tmpPath += "," + dn.CurrNode.Name;
goalPath = tmpPath;
}
}
else
{
if (tmpLength < minx)//路程小于最小值,查询下个子节点
{
tmpPath += "," + dn.CurrNode.Name;
tmpPath = FindMinx(dn.CurrNode, dest, ref minx, tmpLength, srcRank, tmpPath);
if (tmpPath != "")
goalPath = tmpPath;
}
}
}
}
return goalPath;
} 查找最短路径(Route)方法,此处同样使用了递归算法,即算出子节点的最短路径后再算子节点的子节点的最短路径
private bool FindMin(List srcs, GNode dest)
{
string tmpPath;
int destRank = dest.GetRank();
int tempDestRank;
int minLen=0;
bool isFind = false;
List nextNodes = new List();
foreach (GNode src in srcs)
{
if (src.Equals(dest)) return false;
foreach (DNode dn in src.LD)
{
tempDestRank = dn.CurrNode.Rank;
if (tempDestRank == (src.Rank + 1))
{
if(!nextNodes.Contains(dn.CurrNode))
{
nextNodes.Add(dn.CurrNode);
}
dn.CurrNode.MinDist = src.MinDist + dn.Distance;
if (dn.CurrNode.Equals(dest))
{
minLen = src.MinDist + dn.Distance;
isFind = true;
//break;
}
}
}
}
if (isFind)
{
foreach (GNode src in srcs)
{
tmpPath=FindMinx(src, dest, ref minLen, src.MinDist,src.Rank, "");
if (tmpPath != "")
{
dest.Path = src.Path + tmpPath;
dest.MinDist = minLen;
}
}
}
else
{
foreach (GNode goal in nextNodes)
{
minLen = -1;
foreach (GNode src in srcs)
{
if (minLen == -1) minLen = goal.MinDist;
tmpPath = FindMinx(src, goal, ref minLen, src.MinDist, src.Rank, "");
if (tmpPath != "")
{
//dn.CurrNode.BFind = true;
goal.Path = src.Path + tmpPath;
goal.MinDist = minLen;
}
}
}
FindMin(nextNodes, dest);
}
return isFind;
}
调用与显示结果
InitNodes();
string start, end;
if ((start=tbStart.Text.Trim()) == "") return;
if ((end=tbEnd.Text.Trim()) == "") return;
gnStart = ht[start] as GNode;
gnEnd = ht[end] as GNode;
if (gnStart == null || gnEnd == null)
{
MessageBox.Show("开始节点或结尾节点不正确!");
return;
}
gnStart.SetRank(null);
gnStart.BFind = true;
List arrGN=new List();
arrGN.Add(gnStart);
InitRank(arrGN);
FindMin(arrGN, gnEnd);
tbContent.Text = gnEnd.MinDist.ToString()+"rn"+gnEnd.Path;//在界面显示结果
最后
以上就是细心寒风为你收集整理的无向图最短路径算法c语言,无向图最短路径算法(C#)实现的全部内容,希望文章能够帮你解决无向图最短路径算法c语言,无向图最短路径算法(C#)实现所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复