概述
未经授权,严禁转载
研究目的
本文参考华泰证券《华泰风险收益一致性择时模型》,采用研报内的方法对风险收益一致性进行研究。根据研报分析,当行业的收益率与其贝塔呈现较好的正相关时,可以认为市场收益率为正,市场处于上涨状态;当行业的收益率与其贝塔呈现负相关时,可以认为市场收益率为负,市场处于下跌状态,利用这种关系即可构造择时模型。这是华泰风险收益一致性择时的基本思想。
根据此结论,本文试图对研报里面的结果进行了复现并分析,并对风险收益一致性进行了研究,从而其构建择时信号。另外,本文还试图将风险收益一致性信号与均线信号相结合,探究均线策略能否进一步改善风险收益一致性策略。
研究思路
自从20世纪50年代资本资产定价模型提出之后,人们习惯使用贝塔来代表资产与市场组合之间的关系。根据资本资产定价模型,假设资产的贝塔值是稳定的,那么在市场上涨的时候,贝塔高的资产应该收获更高的收益,但是市场下跌的时候也会承担更多的损失,所以贝塔值代表了资产承担市场风险的大小。通过资本资产定价模型我们找到了市场中存在的一种结构,不同资产的涨跌幅与市场组合的涨跌幅会存在相对固定的对应关系。如果反过来使用这种对应关系,就得到了一种观察市场的方法,比如当发现高贝塔的资产收益较高,低贝塔的资产收益较低时,那市场大概率处于一种上升状态,当发现高贝塔的资产收益较低,低贝塔的资产收益较高时,市场可能处于一种下跌状态,如此我们可以构造一个择时模型。
贝塔是资产或投资组合相对于市场波动性的敏感程度。贝塔越高,表明该资产或组合受市场波动的影响越大,从而带来更大的风险溢价(即βp(Rm-Rf),括号内的部分为市场风险溢价)。在市场上涨(或下跌)时,高贝塔的资产由于承担了更多的市场风险, 其收益的变动会比低贝塔的资产更为剧烈。
在资本资产定价模型的收益率公式中,如果贝塔是固定的,那资本的收益率主要取决于市场的收益率,所以市场上涨高贝塔行业涨幅更大,市场下跌同样高贝塔行业会下跌更多。借助于这一点,可以尝试逆向推断市场的涨跌,当行业涨幅与其贝塔状态基本一致的时候说明市场是上涨的,相反的时候说明市场是下跌的。
不同行业的周期特征及Beta表现
此处行业指数我们选择申万一级行业指数,而市场指数选取国证全A指数。数据时间段为2005年2月3日至今,频率为周度。我们需要用指数的周收益率来计算beta。
为了直观地感受不同行业Beta值地周期特征,我们将行业贝塔在每一个截面从小到大排序,得到行业贝塔的秩次,用 rank 表示。将行业贝塔rank在同一张图中表示出来,得到下面这一系列的图。总的来看,行业beta值比较稳定,但在某些特殊时刻也存在跃迁式的变化。例如 15 年中期,急剧的上涨行情使很多行业的贝塔发生了变化,而且这种变化也延续至今。偏向于 TMT类型的行业,计算机、传媒、电子、通信、电力设备等在15年5、6月份贝塔值急剧上升,转变为高贝塔类行业,而银行、非银等行业贝塔值快速下降,行业特性向低贝塔靠近,在此之后,行业的贝塔值在16年一直处于比较稳定的状态。
计算机行业的Beta在2015年快速上升
银行行业的Beta在2015年快速上升,随后快速下降
信号生成和择时体系构建
接下来我们利用行业的贝塔与其收益率之间的关系构建择时模型,由于贝塔代表行业相比于市场组合的风险承担,本质上也代表行业相对于市场组合的杠杆率,一定程度上度量了风险,所以将择时模型起名为风险收益一致性择时模型。
如前所述,资产的贝塔大小与资产收益变动幅度存在相关性,而各个行业具有特征明显且相对稳定的贝塔。基于这一性质,我们可以对行业的贝塔与收益进行观测,进而对判断市场的运行状况:
1、当贝塔与收益趋于一致,即高贝塔的行业收益更高时,认为市场表现良好,观点看多;
2、当贝塔与收益呈反向关系,即高贝塔的行业收益更低时,认为市场表现不佳,观点看空。这一策略有着清晰的逻辑,并且以行业与市场指数做比较,在长期看较为稳定,适合对市 场进行长期判断。
为了度量行业贝塔与收益的一致性,我们引入Spearman 秩相关系数作为工具。
我们利用Spearman秩相关系数度量行业Beta与收益的一致性。
利用之前两年左右的数据,我们在每周末可以得到28个行业的Beta。得到Beta后,我们计算行业Beta与行业收益率的秩相关系数。在计算时,我们假设行业贝塔在周中保持静态不变,采用29个行业当周的收益率$r_t$与上周的贝塔 $β_{t-1} $进行计算。这样的好处是贝塔中并没有包含本周的收益率信息,两者保持一定意义上的相对独立,防止某个异常值带来的贝塔偏离。
为了过滤相关系数中的噪音,得到更稳定的长周期择时信号,我们对秩相关系数取4周的滑动平均,得到滑动平均序列 ?̅?。
根据研报,我们选取98周数据计算β,秩相关系数选取研报中的0.128作为阈值。当?̅?>0.128时,发出一次买入信号;当?̅?<-0.128时,发出一次卖出信号。若连续发出两次同向信号,则执行买入/卖出操作。
信号发出时间
策略净值曲线
策略总共发出35次信号。从信号发出的时间来看,使用不同的行业指数对于信号发出还是有些影响的。总的来说,使用申万行业一级指数和研报中阈值的结果不佳,年化收益过低,不能跑赢国证A指。
敏感性分析
从上面的回测可以看出,应用原始阈值的择时策略效果不佳。而Spearman 秩相关系数的计算较为敏感,其假设检验的拒绝域需要精确到千分位,应用 Spearman 方法的本策略不可避免地受到这一敏感性的影响。所以,我们需要对敏感性进行分析,找出最佳阈值。敏感性分析的参数为信号触发阈值,选取0.100-0.300(步长为0.001)进行测试,选取夏普比率作为优化目标。纵轴为夏普比率,横轴为阈值,样本内夏普比率的变动如下:
敏感性分析
根据敏感性分析,我们可知最优阈值为0.142。此时夏普率为0.64,且策略回撤大幅减少,能够跑赢市场指数。不过依旧不能避开2015年的大回撤。
参数优化后的信号发出时间
参数优化后的净值曲线
与均线策略的结合
纯多策略在 15 年的下跌中出现了一个巨大的回撤。另外,择时模型给出的信号为周频信号,为了将信号扩展到日频,可以尝试加入均线。具体做法为计算市场指数当周收盘价与20日均线之差,若差值为正,均线上给出看多信号;若差值为负,均线上给出看空信号。当均线上信号与策略择时信号一致时进行操作买入或卖出,当信号不一致时清仓,既不做多也不做空。
加入均线策略后,由于均线策略的延迟特性,组合策略未能避过2016年左右的回撤,导致年化收益和夏普率均下降。
风险收益一致性模型结合均线策略的信号发出时间
风险收益一致性模型结合均线策略的净值曲线
组合策略的敏感性分析
与之前类似,我们对结合策略进行参数敏感性分析。
风险收益一致性模型结合均线策略的敏感性分析
最优阈值为0.127-0.13,但夏普率仅为0.54,未能战胜原始策略。
研究结论
总的来说,风险收益一致性模型可以跑赢市场,收益也比较稳定,但在2015年中遭遇了大回撤。策略的大回撤主要来源于 15 年年中的急速下跌,这段时期各行业的贝塔值也发生了急剧 变化,因此导致信号出现了滞后与偏差,这是模型的主要风险,即市场风格的急剧变化。
我们试图加入简单均线策略来改善模型的表现。但由于均线策略的延迟性,策略没能避开15年底的反转带来的大回撤,表现并不如原始模型。
市场风格的变化不单单对此模型,对大部分策略都有很强的破坏性。因为模型总是基于市 场中已经存在的某种固有模式进行建模,当模式迅速切换时,模型很难及时反映。这也从另一方面证明了长期稳定策略的稀缺性。若想改善模型回撤,一个可以考虑的角度是增加 交易频率,甚至在日内做一些操作,放弃部分收益来降低波动与回撤,但这也势必带来交易成本的提高。
点击【阅读原文】,查看研究源码~
最后
以上就是温婉纸飞机为你收集整理的风险收益一致性择时模型的全部内容,希望文章能够帮你解决风险收益一致性择时模型所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复