概述
数据准备
数据集由训练数据和测试数据组成:
- 训练数据包含猫和狗各12500张图片
- 测试数据包含12500张猫和狗的图片
- 下载地址:https://www.kaggle.com/c/dogs-vs-cats
说明:下载该数据需要连接外网
下载下来的数据需要在train文件夹下分成两个文件cat和dog,将猫和狗的图片分开来
VGG结构
vgg模型的复用–dogs-vs-cats
数据的读入–utils.py文件
import tensorflow as tf
import numpy as np
import os
from vgg_preprocess import preprocess_for_train
def get_file(file_dir):
images = []
temp = []
for root,sub_folders,files in os.walk(file_dir):
for name in files:
images.append(os.path.join(root,name))
for name in sub_folders:
temp.append(os.path.join(root,name))
labels = []
for one_folder in temp:
n_img = len(os.listdir(one_folder))
letter = one_folder.split('/')[-1]
if letter == 'cat':
labels = np.append(labels,n_img*[0])
else:
labels = np.append(labels,n_img*[1])
images = np.array(images)
#print(len(images))
#print(len(labels))
#print(images)
#print(labels)
temp = np.array([images,labels])
#print(temp)
temp = temp.transpose()
#print(temp)
np.random.shuffle(temp)
image_list = list(temp[:,0])
label_list = list(temp[:,1])
label_list = [int(float(i)) for i in label_list]
return image_list,label_list
img_width = 224
img_height = 224
def get_batch(image_list,label_list,img_width,img_height,batch_size,capacity):
image = tf.cast(image_list,tf.string) #tf.cast()函数的作用是执行 tensorflow 中张量数据类型转换
label = tf.cast(label_list,tf.int32)
input_queue = tf.train.slice_input_producer([image,label])#tf.train.slice_input_producer是一个tensor生成器,作用是按照设定,每次从一个tensor列表中按顺序或者随机抽取出一个tensor放入文件名队列。
label = input_queue[1]
image_contents = tf.read_file(input_queue[0])
image = tf.image.decode_jpeg(image_contents,channels=3) #解码
image = preprocess_for_train(image,224,224) #对输入图像进行预处理
image_batch,label_batch = tf.train.batch([image,label],batch_size=batch_size,num_threads=64,capacity=capacity)#tf.train.batch是一个tensor队列生成器,作用是按照给定的tensor顺序,把batch_size个tensor推送到文件队列,作为训练一个batch的数据,等待tensor出队执行计算。
return image_batch,label_batch
def onehot(labels):
n_sample = len(labels)
n_class = max(labels)+1
onehot_labels = np.zeros((n_sample,n_class))
onehot_labels[np.arange(n_sample),labels] = 1
return onehot_labels
定义VGG16模型类–VGG16_model.py文件
import tensorflow as tf
from tensorflow import float32
import numpy as np
'''
修改VGG模型:全连接层的神经元个数 trainable参数变动
(1)预测训练的VGG是在ImageNet数据集上进行训练的,对1000个类别进行判定 若希望利用已训练模型用于其他分类任务,
需要修改最后的全连接层
(2)在进行Finetuning对模型重新训练时,对于部分不需要训练的层可以通过设置trainable=False来确保其在训练过程中不会被修改权值
'''
class vgg16:
def __init__(self, imgs):
# 在类的初始化时加入全局列表 将所需共享的参数加载进来
self.parameters = []
self.imgs = imgs
self.convlayers()
self.fc_layers()
# 输出所属类别的概率值
self.probs = tf.nn.softmax(self.fc8)
def saver(self):
return tf.train.Saver()
def maxpool(self, name, input_data):
out = tf.nn.max_pool(input_data, [1, 2, 2, 1], [1, 2, 2, 1], padding="SAME", name = name)
return out
# 卷积层
def conv(self, name, input_data, out_channel, trainable=False):
in_channel = input_data.get_shape()[-1]
with tf.variable_scope(name):
kernel = tf.get_variable("weights", [3, 3, in_channel, out_channel], dtype=tf.float32, trainable=False)
biases = tf.get_variable("biases", [out_channel], dtype=tf.float32, trainable=False)
conv_res = tf.nn.conv2d(input_data, kernel, [1, 1, 1, 1], padding="SAME")
res = tf.nn.bias_add(conv_res, biases)
out = tf.nn.relu(res, name = name)
# 将卷积层的参数kernel和biases加入列表
self.parameters += [kernel, biases]
return out
# 全连接层
def fc(self, name, input_data, out_channel, trainable=True):
shape = input_data.get_shape().as_list()
if len(shape) == 4:
# 全连接层的输入神经元的个数
size = shape[-1] * shape[-2] * shape[-3]
else:
size = shape[1]
# 对数据进行展开操作
input_data_flat = tf.reshape(input_data, [-1, size])
with tf.variable_scope(name):
weights = tf.get_variable(name="weights", shape=[size, out_channel], dtype=tf.float32, trainable=trainable)
biases = tf.get_variable(name="biases", shape=[out_channel], dtype=tf.float32, trainable=trainable)
res = tf.matmul(input_data_flat, weights)
out = tf.nn.relu(tf.nn.bias_add(res, biases))
self.parameters += [weights, biases]
return out
# Vgg的一层卷积层包含两次卷积运算一层池化
def convlayers(self):
#conv1
self.conv1_1 = self.conv('conv1_1',self.imgs,64,trainable=False)
self.conv1_2 = self.conv('conv1_2',self.conv1_1,64,trainable=False)
self.pool1 = self.maxpool('pool1',self.conv1_2)
#conv2
self.conv2_1 = self.conv('conv2_1',self.pool1,128,trainable=False)
self.conv2_2 = self.conv('conv2_2',self.conv2_1,128,trainable=False)
self.pool2 = self.maxpool('pool2',self.conv2_2)
#conv3
self.conv3_1 = self.conv('conv3_1',self.pool2,256,trainable=False)
self.conv3_2 = self.conv('conv3_2',self.conv3_1,256,trainable=False)
self.conv3_3 = self.conv('conv3_3',self.conv3_2,256,trainable=False)
self.pool3 = self.maxpool('pool3',self.conv3_3)
#conv4
self.conv4_1 = self.conv('conv4_1',self.pool3,512,trainable=False)
self.conv4_2 = self.conv('conv4_2',self.conv4_1,512,trainable=False)
self.conv4_3 = self.conv('conv4_3',self.conv4_2,512,trainable=False)
self.pool4 = self.maxpool('pool4',self.conv4_3)
#conv5
self.conv5_1 = self.conv('conv5_1',self.pool4,512,trainable=False)
self.conv5_2 = self.conv('conv5_2',self.conv5_1,512,trainable=False)
self.conv5_3 = self.conv('conv5_3',self.conv5_2,512,trainable=False)
self.pool5 = self.maxpool('pool5',self.conv5_3)
def fc_layers(self):
self.fc6 = self.fc('fc1',self.pool5,4096,trainable=False)
self.fc7 = self.fc('fc2',self.fc6,4096,trainable=False)
self.fc8 = self.fc('fc3',self.fc7,2,trainable=True)
# 这个函数将获取的权重载入VGG模型中
def load_weights(self, weight_file, sess):
weights = np.load(weight_file)
# 按键值进行排序
keys = sorted(weights.keys())
for i, k in enumerate(keys):
# 剔除fc8层和它的softmax层
if i not in [30, 31]:
sess.run(self.parameters[i].assign(weights[k]))
print('---------weights loaded---------')
模型的重新训练与保存
import os
import tensorflow as tf
from time import time
# 上面实现的两个文件
import VGG16_model as model
import utils
startTime = time()
batch_size = 32
# 内存中存储的最大数据容量
capacity = 256
# VGG训练时图像预处理所减均值RGB三通道
means = [123.68, 116.779, 103.939]
# 获取图像列表和标签列表
xs, ys = utils.get_file("./dog-vs-cat/train/")
# 通过读取列表来载入批量图片和标签
image_batch, label_batch = utils.get_batch(xs, ys, 224, 224, batch_size, capacity)
# 设置占位符
x = tf.placeholder(tf.float32, [None, 224, 224, 3])
y = tf.placeholder(tf.int32, [None, 2])
vgg = model.vgg16(x)
fc8_finetuining = vgg.probs # 即softmax层
# 损失函数
loss_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=fc8_finetuining, labels=y))
# 优化器
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(loss_function)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# 通过npz格式的文件获取 VGG的相应权重参数,从而将权重注入即可实现复用
vgg.load_weights("./vgg16/vgg16_weights.npz", sess)
saver = tf.train.Saver()
# 启动线程
# 使用协调器Coordinator来管理线程
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord, sess=sess)
epoch_start_time = time()
for i in range(100):
images, labels = sess.run([image_batch, label_batch])
# 用one-hot 形式对标签进行编码
labels = utils.onehot(labels)
sess.run(optimizer, feed_dict={x: images, y:labels})
loss = sess.run(loss_function, feed_dict={x: images, y: labels})
print("Now the loss is %f" % loss)
epoch_end_time = time()
print("Current epoch takes: ", (epoch_end_time - epoch_start_time))
epoch_start_time = epoch_end_time
if (i+1) % 500 == 0:
saver.save(sess, os.path.join("model/", "epoch {:06d}.ckpt".format(i)))
print("----------Epoch %d is finished----------" % i)
saver.save(sess, "model/")
print("Optimization Finished")
duration = time() - startTime
print("Train Finished takes:", "{:2f}".format(duration))
# 通知其他线程关闭
coord.request_stop()
coord.join(threads)
参考视频:深度学习应用开发TensorFlow实践
最后
以上就是开心裙子为你收集整理的vgg16模型复用--dogs-vs-cats的全部内容,希望文章能够帮你解决vgg16模型复用--dogs-vs-cats所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复