概述
在上一节的例子里,我们使用高和宽为3的输入与高和宽为2的卷积核得到高和宽为2的输出。一般来说,假设输入形状是nh×nwnh×nw n_htimes n_w0×0+0×1+0×2+0×3=0。5.2 填充和步幅
一般来说,如果在高的两侧一共填充phph p_h⌊ph/2⌋行。在宽的两侧填充同理。
卷积神经网络经常使用奇数高宽的卷积核,如1、3、5和7,所以两端上的填充个数相等。对任意的二维数组X
,设它的第i
行第j
列的元素为X[i,j]
。当两端上的填充个数相等,并使输入和输出具有相同的高和宽时,我们就知道输出Y[i,j]
是由输入以X[i,j]
为中心的窗口同卷积核进行互相关计算得到的。
下面的例子里我们创建一个高和宽为3的二维卷积层,然后设输入高和宽两侧的填充数分别为1。给定一个高和宽为8的输入,我们发现输出的高和宽也是8。
import torch
from torch import nn
# 定义一个函数来计算卷积层。它对输入和输出做相应的升维和降维
def comp_conv2d(conv2d, X):
# (1, 1)代表批量大小和通道数(“多输入通道和多输出通道”一节将介绍)均为1
X = X.view((1, 1) + X.shape)
Y = conv2d(X)
return Y.view(Y.shape[2:]) # 排除不关心的前两维:批量和通道
# 注意这里是两侧分别填充1行或列,所以在两侧一共填充2行或列
conv2d = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=3, padding=1)
X = torch.rand(8, 8)
comp_conv2d(conv2d, X).shapeCopy to clipboardErrorCopied
输出:
torch.Size([8, 8])
Copy to clipboardErrorCopied
当卷积核的高和宽不同时,我们也可以通过设置高和宽上不同的填充数使输出和输入具有相同的高和宽。
# 使用高为5、宽为3的卷积核。在高和宽两侧的填充数分别为2和1
conv2d = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape
Copy to clipboardErrorCopied
输出:
torch.Size([8, 8])
Copy to clipboardErrorCopied
5.2.2 步幅
在上一节里我们介绍了二维互相关运算。卷积窗口从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动。我们将每次滑动的行数和列数称为步幅(stride)。
目前我们看到的例子里,在高和宽两个方向上步幅均为1。我们也可以使用更大步幅。图5.3展示了在高上步幅为3、在宽上步幅为2的二维互相关运算。可以看到,输出第一列第二个元素时,卷积窗口向下滑动了3行,而在输出第一行第二个元素时卷积窗口向右滑动了2列。当卷积窗口在输入上再向右滑动2列时,由于输入元素无法填满窗口,无结果输出。图5.3中的阴影部分为输出元素及其计算所使用的输入和核数组元素:0×0+0×1+1×2+2×3=80×0+0×1+1×2+2×3=8 0times0+0times1+1times2+2times3=80×0+6×1+0×2+0×3=6。
一般来说,当高上步幅为shsh s_hn为大于1的整数)。
注:除代码外本节与原书此节基本相同,原书传送门
最后
以上就是正直豌豆为你收集整理的动手学深度学习:5.2 填充和步幅5.2 填充和步幅的全部内容,希望文章能够帮你解决动手学深度学习:5.2 填充和步幅5.2 填充和步幅所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复