我是靠谱客的博主 俊逸饼干,这篇文章主要介绍graphviz,现在分享给大家,希望可以做个参考。

conda install graphviz
conda install python-graphviz

import 报错

复制代码
1
2
RuntimeError: failed to execute ['dot', '-Tpdf', '-O', 'test-output/round-table.gv'], make sure the Graphviz executables are on your systems' path

添加环境变量
在这里插入图片描述

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
def print_autograd_graph(): from graphviz import Digraph import torch import net from torch.autograd import Variable import torchvision.models as models def make_dot(var, params=None): """ Produces Graphviz representation of PyTorch autograd graph Blue nodes are the Variables that require grad, orange are Tensors saved for backward in torch.autograd.Function Args: var: output Variable params: dict of (name, Variable) to add names to node that require grad (TODO: make optional) """ if params is not None: #assert all(isinstance(p, Variable) for p in params.values()) param_map = {id(v): k for k, v in params.items()} node_attr = dict(style='filled', shape='box', align='left', fontsize='12', ranksep='0.1', height='0.2') dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12")) seen = set() def size_to_str(size): return '('+(', ').join(['%d' % v for v in size])+')' def add_nodes(var): if var not in seen: if torch.is_tensor(var): dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange') elif hasattr(var, 'variable'): u = var.variable #name = param_map[id(u)] if params is not None else '' #node_name = '%sn %s' % (name, size_to_str(u.size())) node_name = '%sn %s' % (param_map.get(id(u.data)), size_to_str(u.size())) dot.node(str(id(var)), node_name, fillcolor='lightblue') else: dot.node(str(id(var)), str(type(var).__name__)) seen.add(var) if hasattr(var, 'next_functions'): for u in var.next_functions: if u[0] is not None: dot.edge(str(id(u[0])), str(id(var))) add_nodes(u[0]) if hasattr(var, 'saved_tensors'): for t in var.saved_tensors: dot.edge(str(id(t)), str(id(var))) add_nodes(t) add_nodes(var.grad_fn) return dot torch.manual_seed(1) inputs = torch.randn(1,3,224,224) model = models.resnet18(pretrained=False) # model =net.dehaze_net() y = model(Variable(inputs)) #print(y) g = make_dot(y, params=model.state_dict()) g.view() #g

在这里插入图片描述

ref
https://zhuanlan.zhihu.com/p/33992733

最后

以上就是俊逸饼干最近收集整理的关于graphviz的全部内容,更多相关graphviz内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(53)

评论列表共有 0 条评论

立即
投稿
返回
顶部