我这基础环境是Debian11.1.0(xfce)环境
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97#给普通用户sudo权限 su apt-get install -y vim vim /etc/sudoers quan ALL=(ALL:ALL) ALL #更改国内源 sudo vim /etc/apt/sources.list deb https://mirrors.tuna.tsinghua.edu.cn/debian/ bullseye main contrib non-free # deb-src https://mirrors.tuna.tsinghua.edu.cn/debian/ bullseye main contrib non-free deb https://mirrors.tuna.tsinghua.edu.cn/debian/ bullseye-updates main contrib non-free # deb-src https://mirrors.tuna.tsinghua.edu.cn/debian/ bullseye-updates main contrib non-free deb https://mirrors.tuna.tsinghua.edu.cn/debian/ bullseye-backports main contrib non-free # deb-src https://mirrors.tuna.tsinghua.edu.cn/debian/ bullseye-backports main contrib non-free deb https://mirrors.tuna.tsinghua.edu.cn/debian-security bullseye-security main contrib non-free # deb-src https://mirrors.tuna.tsinghua.edu.cn/debian-security bullseye-security main contrib non-free #安装pip sudo apt-get clean sudo apt-get update sudo apt-get upgrade -y sudo apt-get install python3-pip #安装中文输入法 sudo apt-get install -y fcitx fcitx5 fcitx-ui-classic fcitx-frontend-gtk* fcitx-frontend-qt* fcitx-table* fcitx-m17n fcitx5-chinese-addons fcitx5-rime fcitx5-frontend-gtk2 fcitx5-frontend-gtk3 fcitx5-config-qt fcitx5-module* #换pip3源 sudo mkdir ~/.pip && sudo vim ~/.pip/pip.conf [global] timeout = 6000 index-url = https://pypi.tuna.tsinghua.edu.cn/simple [install] trusted-host = https://pypi.tuna.tsinghua.edu.cn #卸载自带nVidia驱动(实际上并没有自带驱动) sudo apt purge nvidia* #禁用nouveau驱动 sudo vim /etc/modprobe.d/blacklist.conf blacklist nouveau options nouveau modeset=0 sudo update-initramfs -u #重启并从ssh进去 sudo init 6 sudo /etc/init.d/lightdm stop sudo apt-get install linux-headers-$(uname -r) #查看nouveau驱动是否禁用 lsmod | grep nouveau #安装cuda(含显卡驱动),我安装的最新版本,各位可访问官网来查找最新版本号 wget https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.19.01_linux.run sudo sh cuda_11.3.1_465.19.01_linux.run accept 选择Install #配置环境变量 sudo vim ~/.bashrc export PATH=/usr/local/cuda-11.3/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-11.3/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} source ~/.bashrc #验证nVidia驱动 nvidia-smi #验证cuda nvcc -V #安装cudnn,在官网下载 sudo tar zxvf cudnn-11.3-linux-x64-v8.2.1.32.tgz -C ./ sudo cp cuda/include/cudnn* /usr/local/cuda/include && sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn* /usr/local/cuda/lib64/libcudnn* sudo dpkg -i libcudnn8_8.2.1.32-1+cuda11.3_amd64.deb sudo dpkg -i libcudnn8-dev_8.2.1.32-1+cuda11.3_amd64.deb sudo dpkg -i libcudnn8-samples_8.2.1.32-1+cuda11.3_amd64.deb sudo init 6 #验证cudnn cd /usr/local/cuda/samples/1_Utilities/deviceQuery sudo make ./deviceQuery 出现Result = PASS成功 #安装pytorch pip3 install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html #验证pytorch python3 import torch import torchvision print(torch.cuda.is_available())
cdunn如果大家下载不了的话,可以私信我(我不一定及时回)或者自己通过其他途径去下载。
最后
以上就是无奈芒果最近收集整理的关于Debian11.1.0安装人工智能深度学习环境(显卡驱动、cuda、cudnn、pytorch)-炼丹人士必看的全部内容,更多相关Debian11内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复