我是靠谱客的博主 彪壮毛衣,最近开发中收集的这篇文章主要介绍freee Programming Contest 2022(AtCoder Beginner Contest 264) 题解 (A~D)A - “atcoder”.substr()B - Nice GridC - Matrix ReducingProblem StatementD - “redocta”.swap(i,i+1),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

A - “atcoder”.substr()

Time Limit: 2 sec / Memory Limit: 1024 MB

Score : 100 100 100 points

Problem Statement

Print the L L L-th through R R R-th characters of the string atcoder.

Constraints

L L L and R R R are integers.
1 ≤ L ≤ R ≤ 7 1≤L≤R≤7 1LR7

Input

Input is given from Standard Input in the following format:

L L L R R R

Output

Print the answer.

题面翻译

给定左右边界 L L L R R R,求截取 [ L , R ] [L,R] [L,R]后的atcoder字符串。

Sample Input 1

3 6

Sample Output 1

code

The 3 3 3-rd through 6 6 6-th characters of atcoder are code.

Sample Input 2

4 4

Sample Output 2

o

Sample Input 3

1 7

Sample Output 3

atcoder

题解部分

我们用一个string类型变量记录一下字符串atcoder
再用一重循环输出区间内的字符即可。

#include <cstdio>
#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
using namespace std;

int main () {
	string str = " atcoder";
	int l, r;
	scanf ("%d %d", &l, &r);
	for (int i = l; i <= r; i ++) {
		printf ("%c", str[i]);
	}
	return 0;
}

B - Nice Grid

Time Limit: 2 sec / Memory Limit: 1024 MB

Score : 200 200 200 points

Problem Statement

Print the color of the cell at the R-th row from the top and C-th column from the left in the following grid with 15 vertical rows and 15 horizontal columns.

Constraints

1 ≤ R , C ≤ 15 1≤R,C≤15 1R,C15
R R R and C C C are integers.

Input

Input is given from Standard Input in the following format:

R R R C C C

Output

In the grid above, if the color of the cell at the R R R-th row from the top and C C C-th column from the left is black, then print black; if the cell is white, then print white. Note that the judge is case-sensitive.

题面翻译

给出坐标 ( R , C ) (R,C) (R,C),判断上图第 R R R行,第 C C C列的颜色。

Sample Input 1

3 5

Sample Output 1

black

In the grid above, the cell at the 3 3 3-rd row from the top and 5 5 5-th column from the left is black. Thus, black should be printed.

Sample Input 2

4 5

Sample Output 2

white

In the grid above, the cell at the 4 4 4-th row from the top and 5 5 5-th column from the left is white. Thus, white should be printed.

题解部分

我们可以用用两重循环标记整个图的颜色,再输出对应字符串即可。

#include <cstdio>
#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
using namespace std;

bool fl[20][20];

int main () {
	int a, b;
	scanf ("%d %d", &a, &b);
	for (int i = 1; i <= 7; i += 2) {
		for (int j = i; j <= 15 - i + 1; j ++) {//每一圈正方形的上、左边
			fl[i][j] = 1;
			fl[j][i] = 1;
		}
		for (int j = 15 - i + 1; j >= i; j --) {//每一圈正方形的下、右边
			fl[15 - i + 1][j] = 1;
			fl[j][15 - i + 1] = 1;
		}
	}
	printf ("%s", fl[a][b] == 1 ? "black" : "white");
	return 0;
}

C - Matrix Reducing

Time Limit: 2 sec / Memory Limit: 1024 MB

Score : 300 300 300 points

Problem Statement

You are given a matrix A A A with H 1 H_1 H1 rows and W 1 W_1 W1 columns, and a matrix B B B with H 2 H_2 H2 rows and W 2 W_2 W2 columns.

  • For all integer pairs ( i , j ) (i,j) (i,j) such that 1 ≤ i ≤ H 1 1≤i≤H_1 1iH1 and 1 ≤ j ≤ W 1 1≤j≤W_1 1jW1 , the element at the i i i-th row and j j j-th column of matrix A A A is A i , j A_{i,j} Ai,j .

  • For all integer pairs ( i , j ) (i,j) (i,j) such that 1 ≤ i ≤ H 2 1≤i≤H_2 1iH2 and 1 ≤ j ≤ W 2 1≤j≤W_2 1jW2, the element at the i i i-th row and j j j-th column of matrix B B B is B i , j B_{i,j} Bi,j.
    You may perform the following operations on the matrix A A A any number of (possibly 0 0 0) times in any order:

  • Choose an arbitrary row of A A A and remove it.

  • Choose an arbitrary column of A A A and remove it.
    Determine if it is possible to make the matrix A A A equal the matrix B B B.

Constraints

  • 1 ≤ H 2 ≤ H 1 ≤ 10 1≤H_2≤H_1≤10 1H2H110
  • 1 ≤ W 2 ≤ W 1 ≤ 10 1≤W_2≤W_1≤10 1W2W110
  • 1 ≤ A i , j ≤ 1 0 9 1≤A_{i,j}≤10^9 1Ai,j109
  • 1 ≤ B i , j ≤ 1 0 9 1≤B_{i,j}≤10^9 1Bi,j109
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

H 1 H_1 H1 W 1 W_1 W1
A 1 , 1 A_{1,1} A1,1 A 1 , 2 A_{1,2} A1,2 A 1 , W 1 A_{1,W_1} A1,W1
A 2 , 1 A_{2,1} A2,1 A 2 , 2 A_{2,2} A2,2 A 2 , W 1 A_{2,W_1} A2,W1

A H 1 , 1 A_{H_1,1} AH1,1 A H 1 , 2 A_{H_1,2} AH1,2 A H 1 , W 1 A_{H_1,W_1} AH1,W1
H 2 H_2 H2 W 2 W_2 W2
B 1 , 1 B_{1,1} B1,1 B 1 , 2 B_{1,2} B1,2 B 1 , W 2 B_{1,W_2} B1,W2
B 2 , 1 B_{2,1} B2,1 B 2 , 2 B_{2,2} B2,2 B 2 , W 2 B_{2,W_2} B2,W2

B H 2 , 1 B_{H_2,1} BH2,1 B H 2 , 2 B_{H_2,2} BH2,2 B H 2 , W 2 B_{H_2,W_2} BH2,W2

Output

Print Yes if it is possible to make the matrix A A A equal the matrix B B B; print No otherwise. Note that the judge is case-sensitive.

题面翻译

给出两个二维数组 A A A B B B,你可以删除若干次 A A A的任意一行(列),判断是否能将 A A A转化为 B B B

Sample Input 1

4 5
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
2 3
6 8 9
16 18 19

Sample Output 1

Yes

Removing the 2 2 2-nd column from the initial A A A results in:

1 3 4 5
6 8 9 10
11 13 14 15
16 18 19 20

Then, removing the 3 3 3-rd row from A A A results in:

1 3 4 5
6 8 9 10
16 18 19 20

Then, removing the 1 1 1-st row from A A A results in:

6 8 9 10
16 18 19 20

Then, removing the 4 4 4-th column from A A A results in:

6 8 9
16 18 19

Now the matrix equals the matrix B B B.
Thus, we can make the matrix A A A equal the matrix B B B by repeating the operations, so Yes should be printed.

Sample Input 2

3 3
1 1 1
1 1 1
1 1 1
1 1
2

Sample Output 2

No

Regardless of how we perform the operations, we cannot make the matrix A A A equal the matrix B B B, so No should be printed.

题解部分

注意数据范围,长和宽都 ≤ 10 le 10 10,所以我们选择用两个dfs暴搜整个矩阵,如果两个矩阵完全一致,输出Yes,搜完了仍然没有输出,则输出No

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cstdlib>
using namespace std;

const int MAXN = 10 + 5;
int a[MAXN][MAXN], b[MAXN][MAXN];
bool line[MAXN], col[MAXN];
int n1, m1, n2, m2;

bool check () {//判断搜索后的矩阵A是否与B相等
	int I = 1, J;
	for (int i = 1; i <= n1; i ++) {
		if (col[i]) {
			J = 1;
			for (int j = 1; j <= m1; j ++) {
				if (line[j]) {
					if (a[i][j] != b[I][J]) {
						return 0;
					}
					J ++;
				}
			}
			I ++;
		}
	}
	return 1;
}

void dfs_col (int step, int x) {//搜索每一列
	if (step > n2) {
		if (check ()) {
			printf ("Yes");
			exit (0);
		}
		return;
	}
	for (int i = x + 1; i <= n1 - (n2 - step); i ++) {
		if (!col[i]) {
			col[i] = 1;
			dfs_col (step + 1, i);
			col[i] = 0;
		}
	}
}

void dfs_line (int step, int x) {//搜索每一行
	if (step > m2) {
		dfs_col (1, 0);
		return;
	}
	for (int i = x + 1; i <= m1 - (m2 - step); i ++) {
		if (!line[i]) {
			line[i] = 1;
			dfs_line (step + 1, i);
			line[i] = 0;
		}
	}
}

int main () {
	scanf ("%d %d", &n1, &m1);
	for (int i = 1; i <= n1; i ++) {
		for (int j = 1; j <= m1; j ++) {
			scanf ("%d", &a[i][j]);
		}
	}
	scanf ("%d %d", &n2, &m2);
	for (int i = 1; i <= n2; i ++) {
		for (int j = 1; j <= m2; j ++) {
			scanf ("%d", &b[i][j]);
		}
	}
	dfs_line (1, 0);
	printf ("No");
	return 0;
}

D - “redocta”.swap(i,i+1)

Time Limit: 2 sec / Memory Limit: 1024 MB

Score : 400 400 400 points

Problem Statement

You are given a string S S S that is a permutation of atcoder.
On this string S , S, S, you will perform the following operation 0 0 0 or more times:

  • Choose two adjacent characters of S S S and swap them.

Find the minimum number of operations required to make S S S equal atcoder.

Constraints

  • S S S is a string that is a permutation of atcoder

Input

Input is given from Standard Input in the following format:

S S S

Output

Print the answer as an integer.

题面翻译

给出字符串 S S S,每次可以交换相邻的两个字母,求最少需要几次可以把 S S S转化为atcoder

Sample Input 1

catredo

Sample Output 1

8

You can make S S S equal atcoder in 8 8 8 operations as follows:
catredo[ac]tredoactre[od]actr[oe]dactro[de]act[or]deacto[dr]ea[tc]odreatcod[er]
This is the minimum number of operations achievable.

Sample Input 2

atcoder

Sample Output 2

0

In this case, the string S is already atcoder.

Sample Input 3

redocta

Sample Output 3

21

题解部分

这道题我们可以运用冒泡排序的思想,按照顺序,将指定字母交换至指定位置。由于atcoder不包含两个相同的字母,所以不用考虑最小的移动方法。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <string>
#include <algorithm>
using namespace std;

int main () {
	int cnt = 0;
	string str = "atcoder", s;
	cin >> s;
	for (int i = 0; i < 7; i ++) {
		int p = s.find(str[i]);//寻找子串str[i]第一次出现的位置
		if (p < i) {//往后移(理论来说不需要判断)
			for (int j = p; j < i; j ++) {
				swap (s[j], s[j + 1]);
				cnt ++;
			}
		} else if (p > i) {//往前移
			for (int j = p; j > i; j --) {
				swap (s[j], s[j - 1]);
				cnt ++;
			}
		}
	}
	printf ("%d", cnt);
	return 0;
}

最后

以上就是彪壮毛衣为你收集整理的freee Programming Contest 2022(AtCoder Beginner Contest 264) 题解 (A~D)A - “atcoder”.substr()B - Nice GridC - Matrix ReducingProblem StatementD - “redocta”.swap(i,i+1)的全部内容,希望文章能够帮你解决freee Programming Contest 2022(AtCoder Beginner Contest 264) 题解 (A~D)A - “atcoder”.substr()B - Nice GridC - Matrix ReducingProblem StatementD - “redocta”.swap(i,i+1)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(46)

评论列表共有 0 条评论

立即
投稿
返回
顶部