我是靠谱客的博主 苗条钢笔,最近开发中收集的这篇文章主要介绍pandas Series 和 DataFrame拼接总结pandas Series and DataFrame 拼接:pandas拼接:,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

pandas Series and DataFrame 拼接:

  • 使用jupyter notebook
import numpy as np
import pandas as pd

def make_df(cols,ind):
    data={c:[str(c)+str(i) for i in ind]for c in cols}
    return pd.DataFrame(data,ind)
    

make_df('AB',[1,2])
AB
1A1B1
2A2B2
a=[1,2,3]
b=[4,5,6]
c=[7,8,9]

np.concatenate([a,b,c])
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
np.concatenate([a,b,c],axis=0)# axis=1 时报错,必须是一维只能沿着axis=0 拼接
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
d=[[1,2],
   [3,4]]
e=[[5,6],
   [7,8]]
np.concatenate([d,e],axis=0),np.concatenate([d,e],axis=1)
(array([[1, 2],
        [3, 4],
        [5, 6],
        [7, 8]]),
 array([[1, 2, 5, 6],
        [3, 4, 7, 8]]))
f=[9,10]
np.concatenate([d,f],axis=0)# 报错,综上,1,参数为列表,2,必须是同维度

pandas拼接:

主要用到pd.concat()

ser1=pd.Series(['A','B','C'],index=[1,2,3])
ser2=pd.Series(['D','E','F'],index=[4,5,6])
pd.concat([ser1,ser2])
1    A
2    B
3    C
4    D
5    E
6    F
dtype: object
df1=make_df('AB',[1,2])
df2=make_df('AB',[3,4])
print(df1)
print(df2)
print(pd.concat([df1,df2],axis='index'))
print(pd.concat([df1,df2],axis='columns'))# 不能用axis="col"
    A   B
1  A1  B1
2  A2  B2
    A   B
3  A3  B3
4  A4  B4
    A   B
1  A1  B1
2  A2  B2
3  A3  B3
4  A4  B4
     A    B    A    B
1   A1   B1  NaN  NaN
2   A2   B2  NaN  NaN
3  NaN  NaN   A3   B3
4  NaN  NaN   A4   B4

注意以上索引的处理!
下面是 行(index) 索引重复的处理:

df2.index=df1.index
#print(pd.concat([df1,df2],verify_integrity=True))#遇到重复索引报错
print(pd.concat([df1,df2],ignore_index=True))#重新编索引
print(pd.concat([df1,df2],keys=["df1","df2"]))#设定多级索引
    A   B
0  A1  B1
1  A2  B2
2  A3  B3
3  A4  B4
        A   B
df1 1  A1  B1
    2  A2  B2
df2 1  A3  B3
    2  A4  B4

下面是 列(columns) 索引重复:

df5=make_df('ABC',[1,2])
df6=make_df('BCD',[3,4])
print(df5)
print(df6)
print(pd.concat([df5,df6]))#重复列索引发生重叠
    A   B   C
1  A1  B1  C1
2  A2  B2  C2
    B   C   D
3  B3  C3  D3
4  B4  C4  D4
     A   B   C    D
1   A1  B1  C1  NaN
2   A2  B2  C2  NaN
3  NaN  B3  C3   D3
4  NaN  B4  C4   D4
print(pd.concat([df5,df6],join='inner'))#交集合并
print(pd.concat([df5,df6],join='outer'))#默认的方式,并集合并
    B   C
1  B1  C1
2  B2  C2
3  B3  C3
4  B4  C4
     A   B   C    D
1   A1  B1  C1  NaN
2   A2  B2  C2  NaN
3  NaN  B3  C3   D3
4  NaN  B4  C4   D4
print(pd.concat([df5,df5,df6]))#拼接多个,Pandas 1.0.1版本没有join_axes参数
     A   B   C    D
1   A1  B1  C1  NaN
2   A2  B2  C2  NaN
1   A1  B1  C1  NaN
2   A2  B2  C2  NaN
3  NaN  B3  C3   D3
4  NaN  B4  C4   D4
print(df5.append([df6,df6],ignore_index=True))#pd.concat 的简化,也可多个拼接,但是效率不够高
     A   B   C    D
0   A1  B1  C1  NaN
1   A2  B2  C2  NaN
2  NaN  B3  C3   D3
3  NaN  B4  C4   D4
4  NaN  B3  C3   D3
5  NaN  B4  C4   D4

合并数据集:

Pandas 的基本特性之一就是高性能的内存式数据连接(join)与合并(merge)操作
pd.merge() 实现的功能基于关系代数(relational algebra)的一部分。关系代数是处理关系型数据的通用理论,绝大部分数据库的可用操作都以此为理论基础。关系代数方法论的强大之处在于,它提出的若干简单操作规则经过组合就可以为任意数据集构建十分复杂的操作

pd.merge(),发现两个DataFrame的相同列(一个或多个)作为键连接:有1:1,1:many,many:many三种情况。

  • 参数:
    1. on=指定列作为键连接(可以是列表)
    2. left_on,right_on:指定列名,重复的可用DataFrame.drop(列名,axis=1)去掉
    3. left_index=True,right_index=True:将index指定为键连接,df1.join(df2)也可实现
    4. 2,3可混用的。
    5. 函数默认丢弃原行索引
    6. how= ‘inner’,‘outer’,‘left’,‘right’,分别对应重复列的交集,并集,使用左列值,使用右列值。
    7. suffixes 对合并后的重复列自定义后缀,默认’_x’’_y’
gf1=pd.DataFrame({'employee':('Bob','Lisa','Jeff',"Tessa"),'wages':(1200,1300,900,1000)})
gf2=pd.DataFrame({'employee':('Lisa','Tessa','James','Bob'),'days':(1200,5,3,6)})
gf1,gf2
(  employee  wages
 0      Bob   1200
 1     Lisa   1300
 2     Jeff    900
 3    Tessa   1000,
   employee  days
 0     Lisa  1200
 1    Tessa     5
 2    James     3
 3      Bob     6)
pd.merge(gf1,gf2,left_on='wages',right_on='days')# 关键就在于有重复项,非重复项将被剔除。
employee_xwagesemployee_ydays
0Bob1200Lisa1200
gf1=gf1.set_index('employee')
gf2=gf2.set_index("employee")

gf1.join(gf2),pd.merge(gf1,gf2,left_index=True,right_on='employee')#索引作为键,2,3混用。也可看出join与merge有所不同的。
(          wages    days
 employee               
 Bob        1200     6.0
 Lisa       1300  1200.0
 Jeff        900     NaN
 Tessa      1000     5.0,
           wages  days
 employee             
 Bob        1200     6
 Lisa       1300  1200
 Tessa      1000     5)
pd.merge(gf1,gf2,how='outer',left_index=True,right_index=True)
wagesdays
employee
Bob1200.06.0
JamesNaN3.0
Jeff900.0NaN
Lisa1300.01200.0
Tessa1000.05.0
gh1=pd.DataFrame([{'Adam','Panda','Jim','Frau'},{'ice cream','meat','bread','noodles'}])
gh2=pd.DataFrame([{'Adam','Pearson','Jim','Kay'},{'vermouth','cola','beer','water'}])
gh1=gh1.T
gh2=gh2.T
gh1,gh2
(       0          1
 0   Frau       meat
 1  Panda      bread
 2    Jim  ice cream
 3   Adam    noodles,
          0         1
 0      Jim     water
 1  Pearson      beer
 2      Kay      cola
 3     Adam  vermouth)
pd.merge(gh1,gh2,how='right')
01
0Jimwater
1Pearsonbeer
2Kaycola
3Adamvermouth
gh1.columns=['name','food']
gh2.columns=['people','water']

print(pd.merge(gh1,gh2,how='left',left_on='name',right_on='people').drop('people',axis=1))
pd.merge(gh1,gh2,how='left',left_on='name',right_on='people')
#left_on 与right_on 如果不同,就会分列开.
    name       food     water
0   Frau       meat       NaN
1  Panda      bread       NaN
2    Jim  ice cream     water
3   Adam    noodles  vermouth
namefoodpeoplewater
0FraumeatNaNNaN
1PandabreadNaNNaN
2Jimice creamJimwater
3AdamnoodlesAdamvermouth
popu=pd.read_csv('H:datastate-population.csv')
areas=pd.read_csv('H:datastate-areas.csv')
abbrevs=pd.read_csv('H:datastate-abbrevs.csv')
popu.head(),areas.head(),abbrevs.head()
(  state/region     ages  year  population
 0           AL  under18  2012   1117489.0
 1           AL    total  2012   4817528.0
 2           AL  under18  2010   1130966.0
 3           AL    total  2010   4785570.0
 4           AL  under18  2011   1125763.0,
         state  area (sq. mi)
 0     Alabama          52423
 1      Alaska         656425
 2     Arizona         114006
 3    Arkansas          53182
 4  California         163707,
         state abbreviation
 0     Alabama           AL
 1      Alaska           AK
 2     Arizona           AZ
 3    Arkansas           AR
 4  California           CA)
m1=pd.merge(popu,abbrevs,how='outer',left_on='state/region',right_on='abbreviation')
m1=m1.drop('abbreviation',axis=1)
m1.head()
state/regionagesyearpopulationstate
0ALunder1820121117489.0Alabama
1ALtotal20124817528.0Alabama
2ALunder1820101130966.0Alabama
3ALtotal20104785570.0Alabama
4ALunder1820111125763.0Alabama
m1.isnull().any()
state/region    False
ages            False
year            False
population       True
state            True
dtype: bool
m1[m1['population'].isnull()].head()# 查找人口缺失值
state/regionagesyearpopulationstate
2448PRunder181990NaNNaN
2449PRtotal1990NaNNaN
2450PRtotal1991NaNNaN
2451PRunder181991NaNNaN
2452PRtotal1993NaNNaN
m1.loc[m1['state'].isnull(),'state/region'].unique()
array(['PR', 'USA'], dtype=object)
m1.loc[m1['state/region']=='PR','state']='Puerto Rico'
m1.loc[m1['state/region']=='USA','state']='United States'
final=pd.merge(m1,areas,how='outer')
final.head()
state/regionagesyearpopulationstatearea (sq. mi)
0ALunder1820121117489.0Alabama52423.0
1ALtotal20124817528.0Alabama52423.0
2ALunder1820101130966.0Alabama52423.0
3ALtotal20104785570.0Alabama52423.0
4ALunder1820111125763.0Alabama52423.0
final.isnull().any()
state/region     False
ages             False
year             False
population        True
state            False
area (sq. mi)     True
dtype: bool
final.loc[final['area (sq. mi)'].isnull(),'state'].unique()
array(['United States'], dtype=object)
 final['state'][final['area (sq. mi)'].isnull()].unique()#关注一下这两中访问数据的方式。loc,iloc,ix 都是非常强大的函数。必要时可以练习一下。
array(['United States'], dtype=object)
final.dropna(inplace=True)# inplace 是是否在原基础上进行修改。
data2010=final.query("year==2010&ages=='total'")
data2010.set_index('state',inplace=True)
density=data2010['population']/data2010['area (sq. mi)']
density.head()
state
Alabama        91.287603
Alaska          1.087509
Arizona        56.214497
Arkansas       54.948667
California    228.051342
dtype: float64
density.sort_values(ascending=False,inplace=True)
density.head()
density.tail()
state
South Dakota    10.583512
North Dakota     9.537565
Montana          6.736171
Wyoming          5.768079
Alaska           1.087509
dtype: float64

最后

以上就是苗条钢笔为你收集整理的pandas Series 和 DataFrame拼接总结pandas Series and DataFrame 拼接:pandas拼接:的全部内容,希望文章能够帮你解决pandas Series 和 DataFrame拼接总结pandas Series and DataFrame 拼接:pandas拼接:所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(49)

评论列表共有 0 条评论

立即
投稿
返回
顶部