1.系统环境
1
2
3
4
5
6系统:ubuntu16.04 GPU驱动:nvidia-driver-418-server CUDA版本:cuda10.1 CUDNN版本:cudnn7.6.4 Anaconda版本:Anaconda5.2 (python3.6) opencv版本:opencv-3.3.0
2.安装caffe
opencv-3.3.0的编译可以参考我的:
https://blog.csdn.net/lu_linux/article/details/117187172
环境依赖
1
2
3
4
5
6sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler sudo apt-get install --no-install-recommends libboost-all-dev sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev sudo apt-get install git cmake build-essential
clone caffe源码
1
2
3git clone https://github.com/BVLC/caffe.git cd caffe cp Makefile.config.example Makefile.config
修改 Makefile.config 文件内容:
1.应用 cudnn
1
2
3
4将 #USE_CUDNN := 1 修改成: USE_CUDNN := 1
2.应用 opencv 版本
1
2
3
4
5
6
7
8将 #USE_OPENCV := 0 修改为: USE_OPENCV := 1 将 #OPENCV_VERSION := 3 修改为: OPENCV_VERSION := 3
3.使用 python 接口
1
2
3
4将 #WITH_PYTHON_LAYER := 1 修改为 WITH_PYTHON_LAYER := 1
4.修改 python 路径
1
2
3
4
5INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib 修改为: INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial
5.修改Python版本
1
2
3
4
5# 推荐使用python3.6的版本 # 把python2.7代码加注释,python3.5前的注释去掉改成 PYTHON_LIBRARIES := boost_python3 python3.6m PYTHON_INCLUDE := /usr/local/include/python3.6m /usr/local/lib/python3.6/site-packages/numpy/core/include
6.修改cuda版本不兼容问题
1
2
3
4
5
6
7
8
9
10
11# 如果cuda版本大于等于9.0,需要注释掉前两行,如下 # -gencode arch=compute_20,code=sm_20 # -gencode arch=compute_20,code=sm_21 CUDA_ARCH := -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_61,code=compute_61
然后修改 caffe 目录下的 Makefile 文件:
1
2
3
4
5将: NVCCFLAGS +=-ccbin=$(CXX) -Xcompiler-fPIC $(COMMON_FLAGS) 替换为: NVCCFLAGS += -D_FORCE_INLINES -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)
1
2
3
4
5将: LIBRARIES += glog gflags protobuf boost_system boost_filesystem m 改为: LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial
然后修改 host_config.h 文件 :
1
2
3
4
5
6
7
8
9
10root@computer:/home/share/caffe# grep -rn "unsupported GNU" /usr/local/cuda/include/ /usr/local/cuda/include/crt/host_config.h:129:#error -- unsupported GNU version! gcc versions later than 8 are not supported! root@computer:/home/share/caffe# 从上面日志可以看出我的cuda10.1已经支持到gnu 8了,我本地的gnu版本是7,故不需要修改 如果cuda版本支持的gnu版本小于当前系统gnu版本则需要注释掉,如果日志如下(cuda支持的为4.9)就需要注释掉: 将 #error-- unsupported GNU version! gcc versions later than 4.9 are not supported! 改为 //#error-- unsupported GNU version! gcc versions later than 4.9 are not supported!
开始编译
1make all -j8
报错:
/usr/bin/ld: cannot find -lboost_python3
找不到boost_python3造成的,需要自己编译一个
可以参考:https://blog.csdn.net/u012505617/article/details/88556621
1
2
3
4
5
6
7
8
9
10# 下载boost_1_67_0.tar.gz wget http://sourceforge.net/projects/boost/files/boost/1.67.0/boost_1_67_0.tar.gz # 解压文件包 tar -zxvf boost_1_67_0.tar.gz # 进入文件夹 cd boost_1_67_0/ # 生成 .so 文件 ./bootstrap.sh --with-libraries=python --with-toolset=gcc ./b2 --with-python include="/usr/local/include/python3.6m"
创建软连接
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21root@computer:/home/share/boost_1_67_0# cd stage/lib/ root@computer:/home/share/boost_1_67_0/stage/lib# ll total 1052 drwxr-xr-x 2 root root 4096 May 24 11:00 ./ drwxr-xr-x 3 root root 4096 May 24 10:57 ../ -rw-r--r-- 1 root root 85744 May 24 11:00 libboost_numpy36.a lrwxrwxrwx 1 root root 26 May 24 10:58 libboost_numpy36.so -> libboost_numpy36.so.1.67.0* -rwxr-xr-x 1 root root 65192 May 24 10:58 libboost_numpy36.so.1.67.0* -rw-r--r-- 1 root root 571448 May 24 10:59 libboost_python36.a lrwxrwxrwx 1 root root 27 May 24 10:58 libboost_python36.so -> libboost_python36.so.1.67.0* -rwxr-xr-x 1 root root 342584 May 24 10:58 libboost_python36.so.1.67.0* root@computer:/home/share/boost_1_67_0/stage/lib# cp -rf libboost_python36.so.1.67.0 /usr/lib/x86_64-linux-gnu/libboost_python-py36.so.1.67.0 root@computer:/home/share/boost_1_67_0/stage/lib# cp -rf libboost_python36.a /usr/lib/x86_64-linux-gnu/libboost_python36.a root@computer:/home/share/boost_1_67_0/stage/lib# ln -s /usr/lib/x86_64-linux-gnu/libboost_python-py36.so.1.67.0 /usr/lib/x86_64-linux-gnu/libboost_python3.so root@computer:/home/share/boost_1_67_0/stage/lib#
make test测试
1sudo make test
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18LD .build_release/src/caffe/test/test_stochastic_pooling.o LD .build_release/src/caffe/test/test_common.o LD .build_release/src/caffe/test/test_sigmoid_cross_entropy_loss_layer.o LD .build_release/src/caffe/test/test_hinge_loss_layer.o LD .build_release/src/caffe/test/test_reduction_layer.o LD .build_release/src/caffe/test/test_tile_layer.o LD .build_release/src/caffe/test/test_hdf5data_layer.o LD .build_release/src/caffe/test/test_infogain_loss_layer.o LD .build_release/src/caffe/test/test_scale_layer.o LD .build_release/src/caffe/test/test_syncedmem.o LD .build_release/src/caffe/test/test_inner_product_layer.o LD .build_release/src/caffe/test/test_slice_layer.o LD .build_release/src/caffe/test/test_net.o LD .build_release/src/caffe/test/test_batch_norm_layer.o LD .build_release/src/caffe/test/test_lrn_layer.o LD .build_release/cuda/src/caffe/test/test_im2col_kernel.o CXX/LD -o .build_release/test/test_all.testbin src/caffe/test/test_caffe_main.cpp root@computer:/home/share/caffe#
make runtest测试
1sudo make runtest
失败报错如下:
.build_release/tools/caffe: error while loading shared libraries: libboost_python36.so.1.67.0: cannot open shared object file: No such file or directory
解决方法:创建软连接
1
2root@computer:/home/share/caffe# ln -s /usr/lib/x86_64-linux-gnu/libboost_python-py36.so.1.67.0 /usr/lib/x86_64-linux-gnu/libboost_python36.so.1.67.0 root@computer:/home/share/caffe#
再次测试
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22[----------] 2 tests from EuclideanLossLayerTest/3, where TypeParam = caffe::GPUDevice<double> [ RUN ] EuclideanLossLayerTest/3.TestForward [ OK ] EuclideanLossLayerTest/3.TestForward (1 ms) [ RUN ] EuclideanLossLayerTest/3.TestGradient [ OK ] EuclideanLossLayerTest/3.TestGradient (33 ms) [----------] 2 tests from EuclideanLossLayerTest/3 (34 ms total) [----------] 1 test from SolverTypeUpgradeTest [ RUN ] SolverTypeUpgradeTest.TestSimple [ OK ] SolverTypeUpgradeTest.TestSimple (1 ms) [----------] 1 test from SolverTypeUpgradeTest (1 ms total) [----------] Global test environment tear-down [==========] 2207 tests from 285 test cases ran. (537753 ms total) [ PASSED ] 2207 tests. root@computer:/home/share/caffe#
mnist数据集测试
1
2
3
4
5
6
7
8
9# 下载mnist数据集 cd caffe/data/mnist sudo sh ./get_mnist.sh # 在该目录下将有相应图片和标签文件mnist数据格式转换 cd caffe sudo sh ./examples/mnist/create_mnist.sh # 将在mnist文件夹(上个步骤的路径)生成LMDB格式数据集 # 训练mnist cd caffe sudo sh ./examples/mnist/train_lenet.sh
编译pycaffe
在caffe根目录的python文件夹下,有一个requirements.txt的清单文件,上面列出了需要的依赖库,按照这个清单安装就可以了。
在安装scipy库的时候,需要fortran编译器(gfortran),如果没有这个编译器就会报错,因此,我们可以先安装一下。
首先回到caffe的根目录,然后执行安装代码:
1
2
3
4cd caffe sudo apt-get install gfortran cd ./python for req in $(cat requirements.txt); do pip install $req; done
安装完成以后,再次回到caffe根目录我们可以执行:
1
2cd .. sudo pip install -r python/requirements.txt
就会看到,安装成功的,都会显示Requirement already satisfied, 没有安装成功的,会继续安装。
编译python接口:
1
2
3make pycaffe -j8 make distribute
如果没有任何错误,这个时候你会在你的caffe主目录下面看到一个distribute的文件夹。这儿就是我们需要的pycaffe了。接着我们需要将python配置到环境变量里面:
1
2
3
4
5
6
7
8
9sudo gedit ~/.bashrc 将export PYTHONPATH=/home/share/caffe/python:$PYTHONPATH添加到文件中 source ~/.bashrc vim ~/.bashrc export PYTHONPATH="/home/share/caffe/python:$PYTHONPATH" export LD_LIBRARY_PATH="/home/share/caffe/distribute/lib:$LD_LIBRARY_PATH" #退出vim source ~/.bashrc
后面你在命令行当中输入python并"import caffe",如果么有发现错误提示,即代表安装成功。
最后
以上就是沉默胡萝卜最近收集整理的关于ubuntu16.04 + cuda10.1 + opencv-3.3.0 + caffe的全部内容,更多相关ubuntu16.04内容请搜索靠谱客的其他文章。
发表评论 取消回复