我是靠谱客的博主 超帅小熊猫,最近开发中收集的这篇文章主要介绍通过python实现K短路算法,并绘制地图。,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

假设有张8*8的地图,每个位置点id按照0-63排序。 - | 表示双向连通,箭头方向表示单向连通方向。

00 - 01 - 02 - 03 - 04 - 05 - 06 - 07
|     |     |     |     |     |     |     |		
08 - 09 - 10 - 11 - 12 - 13 - 14 - 15
|     |     |     |     |     |     |     |		
16 - 17 - 18 - 19 - 20 - 21 - 22 - 23
|     |     |     |     ↑     |     |     |		
24 - 25 - 26 - 27 - 28 ←  29 - 30 - 31
|     |           ↓     ↑     |     |     |		
32 - 33    34 ←  35 → 36     37 - 38 - 39
|     |     |     ↓     ↑     |     |     |		
40 - 41 →  42 →  43 →  44 - 45 - 46 - 47
|     |           |           |     |     |		
48 - 49 - 50 - 51 - 52 - 53 - 54 - 55
|     |     |     |     |     |     |     |		
56 - 57 - 58 - 59 - 60 - 61 - 62 - 63

外部道路均是双向连通的, 有内部道路边集合

[20,28], [28,20], [28,29], [29,28], [27,28], [28,27], [28,36], [36,28], [36,37], [37,36], [36,44], [44,36], 
[44,45], [45,44],[44,52],[52,44],[35,36],[36,35],[43,44],[44,43],[27,35],[35,27],[35,43],[43,35],[43,51],[51,43],
[34,35],[35,34],[42,43],[43,42],[26,34],[34,26],[34,42],[42,34],[42,50],[50,42],[33,34],[34,33],[41,42],[42,41]

用随机数 (0,1) 决定其连通方向。

import random

def draws(orig):
    graph = [ [] for i in range(0,64) ]
    a = [ ['  ' for i in range(0,15)] for i in range(0,15) ] 
    for i in range(0,15,2):
        for j in range(1,15,2):
            x = int(i/2) # 0
            y = int((j - 1)/2)  # 0
            number = y * 8 + x
            if orig[number][number + 8] == 1 and orig[number + 8][number] == 1 : 
                a[j][i] = '|tt'
                graph[number].append(number + 8)
                graph[number + 8].append(number)
            if orig[number][number + 8] == 1 and orig[number + 8][number] > 999 : 
                a[j][i] = '↓tt'
                graph[number + 8].append(number)
            if orig[number][number + 8] > 999 and orig[number + 8][number] == 1 : 
                a[j][i] = '↑tt'
                graph[number].append(number + 8)
            if orig[number][number + 8] > 999 and orig[number + 8][number] > 999 : 
                a[j][i] = '  tt'
            a[j-1][i] = "%02d"%(number)

    for i in range(1,15,2):
        for j in range(0,15,2):
            x = int((i-1)/2)
            y = int(j/2)
            number = y * 8 + x
            if orig[number][number + 1] == 1 and orig[number + 1][number] == 1 : 
                a[j][i] = 't-t'
                graph[number].append(number + 1)
                graph[number + 1].append(number)
            if orig[number][number + 1] == 1 and orig[number + 1][number] > 999 : 
                a[j][i] = 't→t'
                graph[number + 1].append(number)
            if orig[number][number + 1] > 999 and orig[number + 1][number] == 1 : 
                a[j][i] = 't←t' 
                graph[number].append(number + 1)
            if orig[number][number + 1] > 999 and orig[number + 1][number] > 999 : 
                a[j][i] = 't  t' 
            a[j][i - 1] = "%02d"%(number)
    for line in a:
        print("".join(line))
    return [ list(set(x)) for x in graph ]

def show():
    cand = []
    for i in range(0,64):
        cand.append(i)
        if len(cand) == 8: 
            print(cand)
            cand = []

# generate road_matrix
def generate_map(b_ids, b_vals):
    roads_matrix = [ [ float('inf') ] * 64 for i in range(0,64) ]
    for i in range(0,64):
        if i%8 > 0: 
            roads_matrix[i][i - 1] = 1
        if i%8 < 7: 
            roads_matrix[i][i + 1] = 1
        if i/8 >= 1: 
            roads_matrix[i][i - 8] = 1
        if i/8 < 7: 
            roads_matrix[i][i + 8] = 1

    for i, id_pair in enumerate(b_ids):
        roads_matrix[id_pair[0]][id_pair[1]] = b_vals[i] if b_vals[i] == 1 else float('inf')
    input_data = []
    input_data.append([ float('inf') ] * 65)
    for i in range(0, 64):
        cand = [float('inf')]
        for j in range(0, 64):
            cand.append(roads_matrix[i][j])
        input_data.append(cand)
    return input_data, roads_matrix

通过调用下面程序获得输出结果及图的邻接矩阵

b_ids = [ [20,28], [28,20], [28,29], [29,28], [27,28], [28,27], [28,36], [36,28], [36,37], [37,36], [36,44], [44,36], 
       [44,45], [45,44],[44,52],[52,44],[35,36],[36,35],[43,44],[44,43],[27,35],[35,27],[35,43],[43,35],[43,51],[51,43],
       [34,35],[35,34],[42,43],[43,42],[26,34],[34,26],[34,42],[42,34],[42,50],[50,42],[33,34],[34,33],[41,42],[42,41] ]
b_vals = [ random.randint(0,1) for i in range(0,len(b_ids)) ]   
input_data, orig = generate_map(b_ids, b_vals)
#show()
g = draws(orig)

通过下面K最短路算法,在该图上进行k最短路寻路

import heapq
import sys
 
class Graph:
    def __init__(self):
        self.vertices = {}
 
    def add_vertex(self, name, edges):
        self.vertices[name] = edges
 
    def get_shortest_path(self, startpoint, endpoint):
        # distances使用字典的方式保存每一个顶点到startpoint点的距离
        distances = {}
 
        # 从startpoint到某点的最优路径的前一个结点
        # eg:startpoint->B->D->E,则previous[E]=D,previous[D]=B,等等
        previous = {}
 
        # 用来保存图中所有顶点的到startpoint点的距离的优先队列
        # 这个距离不一定是最短距离
        nodes = []
        shortest_path = None
        lenPath = float('inf')
        
        # Dikstra算法 数据初始化
        for vertex in self.vertices:
            if vertex == startpoint:
                # 将startpoint点的距离初始化为0
                distances[vertex] = 0
                heapq.heappush(nodes, [0, vertex])
            elif vertex in self.vertices[startpoint]:
                # 把与startpoint点相连的结点距离startpoint点的距离初始化为对应的弧长/路权
                distances[vertex] = self.vertices[startpoint][vertex]
                heapq.heappush(nodes, [self.vertices[startpoint][vertex], vertex])
                previous[vertex] = startpoint
            else:
                # 把与startpoint点不直接连接的结点距离startpoint的距离初始化为sys.maxsize
                distances[vertex] = sys.maxsize
                heapq.heappush(nodes, [sys.maxsize, vertex])
                previous[vertex] = None
 
        while nodes:
            # 取出队列中最小距离的结点
            smallest = heapq.heappop(nodes)[1]
            if smallest == endpoint:
                shortest_path = []
                lenPath = distances[smallest]
                temp = smallest
                while temp != startpoint:
                    shortest_path.append(temp)
                    temp = previous[temp]
                # 将startpoint点也加入到shortest_path中
                shortest_path.append(temp)
            if distances[smallest] == sys.maxsize:
                # 所有点不可达
                break
            # 遍历与smallest相连的结点,更新其与结点的距离、前继节点
            for neighbor in self.vertices[smallest]:
                dis = distances[smallest] + self.vertices[smallest][neighbor]
                if dis < distances[neighbor]:
                    distances[neighbor] = dis
                    # 更新与smallest相连的结点的前继节点
                    previous[neighbor] = smallest
                    for node in nodes:
                        if node[1] == neighbor:
                            # 更新与smallest相连的结点到startpoint的距离
                            node[0] = dis
                            break
                    heapq.heapify(nodes)
        return distances, shortest_path, lenPath
 
    def getMinDistancesIncrement(self, inputList):
        inputList.sort()
        lenList = [v[0] for v in inputList]
        minValue = min(lenList)
        minValue_index = lenList.index(minValue)
        minPath = [v[1] for v in inputList][minValue_index]
        return minValue, minPath, minValue_index
 
    def deleteCirclesWithEndpoint(self,inputList, endpoint):
        '''
        该函数主要是删除类似于这样的例子: endpoint->...->endpoint-->...
        '''
        pathsList = [v[1] for v in inputList]
        for index, path in enumerate(pathsList):
            if len(path) > 1 and path[-1] == endpoint:
                inputList.pop(index)
        return inputList
 
    def k_shortest_paths(self,start, finish, k = 3):
        '''
        :param start: 起始点
        :param finish: 终点
        :param k: 给出需要求的最短路数
        :return: 返回K最短路和最短路长度
        该算法重复计算了最短路,调用get_shortest_path()方法只是用到了起始点到其他所有点的最短距离和最短路长度
        '''
        distances, _, shortestPathLen = self.get_shortest_path(start, finish)
        num_shortest_path = 0
        paths = dict()
        distancesIncrementList = [[0, finish]]
        while num_shortest_path < k:
            path = []
            #distancesIncrementList = self.deleteCirclesWithEndpoint(distancesIncrementList,finish)
            minValue, minPath, minIndex = self.getMinDistancesIncrement(distancesIncrementList)
            smallest_vertex = minPath[-1]
            distancesIncrementList.pop(minIndex)
 
            if smallest_vertex == start:
                path.append(minPath[::-1])
                num_shortest_path += 1
                paths[path[0]] = minValue + shortestPathLen
                continue
 
            for neighbor in self.vertices[smallest_vertex]:
                incrementValue = minPath
                increment = 0
                if neighbor == finish:
                    continue
                if distances[smallest_vertex] == (distances[neighbor] + self.vertices[smallest_vertex][neighbor]):
                    increment = minValue
                elif distances[smallest_vertex] < (distances[neighbor] + self.vertices[smallest_vertex][neighbor]):
                    increment = minValue + distances[neighbor] + self.vertices[smallest_vertex][neighbor] - distances[smallest_vertex]
                elif distances[neighbor] == (distances[smallest_vertex] + self.vertices[smallest_vertex][neighbor]):
                    increment = minValue + 2 * self.vertices[smallest_vertex][neighbor]
                distancesIncrementList.append([increment, incrementValue + neighbor])
        results = {}
        for path in paths:
            result = []
            for ch in path:
                result.append("%d|"%(ord(ch)-65))
            results["".join(result)] = paths[path]
        return results

def generate_graph(adj):
    gk = Graph()
    for i, line in enumerate(adj):
        tmp = { chr(65+k): 1 for k in line }
        gk.add_vertex(chr(65+i), tmp)
    return gk

def search_k(gk, start, end, k):
    start = chr(65+int(start))
    end = chr(65+int(end))
    distances, shortestPath, shortestPathLen = gk.get_shortest_path(start, end)
    paths = gk.k_shortest_paths(start, end, k)
    result = []
    for path in paths:
        val = path.split("|")
        vals = []
        for v in val: 
            if len(v) > 0: vals.append(int(v))
        result.append((vals, paths[path]))
    return result
    
gk = generate_graph(g)
result = search_k(gk, 1, 44, 50)
index = 1
for line in result:
    print('{}:{} 最短路长度:{}'.format(index, line[0], line[1]))
    index += 1

获得结果为:

1:[1, 2, 3, 4, 5, 13, 21, 29, 37, 45, 44] 最短路长度:10
2:[1, 2, 3, 4, 12, 13, 21, 29, 37, 45, 44] 最短路长度:10
3:[1, 2, 3, 11, 12, 13, 21, 29, 37, 45, 44] 最短路长度:10
4:[1, 2, 10, 11, 12, 13, 21, 29, 37, 45, 44] 最短路长度:10
5:[1, 9, 10, 11, 12, 13, 21, 29, 37, 45, 44] 最短路长度:10
6:[1, 2, 3, 4, 12, 20, 21, 29, 37, 45, 44] 最短路长度:10
7:[1, 2, 3, 11, 12, 20, 21, 29, 37, 45, 44] 最短路长度:10
8:[1, 2, 10, 11, 12, 20, 21, 29, 37, 45, 44] 最短路长度:10
9:[1, 9, 10, 11, 12, 20, 21, 29, 37, 45, 44] 最短路长度:10
10:[1, 2, 3, 11, 19, 20, 21, 29, 37, 45, 44] 最短路长度:10
11:[1, 2, 10, 11, 19, 20, 21, 29, 37, 45, 44] 最短路长度:10
12:[1, 9, 10, 11, 19, 20, 21, 29, 37, 45, 44] 最短路长度:10
13:[1, 2, 10, 18, 19, 20, 21, 29, 37, 45, 44] 最短路长度:10
14:[1, 9, 10, 18, 19, 20, 21, 29, 37, 45, 44] 最短路长度:10
15:[1, 9, 17, 18, 19, 20, 21, 29, 37, 45, 44] 最短路长度:10

 

最后

以上就是超帅小熊猫为你收集整理的通过python实现K短路算法,并绘制地图。的全部内容,希望文章能够帮你解决通过python实现K短路算法,并绘制地图。所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(50)

评论列表共有 0 条评论

立即
投稿
返回
顶部