概述
经过深入研究并基于this,this等,我建议实现k最短路径算法,以便在大型无向,循环加权图中找到第一,第二,第三…第k个最短路径.大约2000个节点.
Wikipedia上的伪代码是这样的:
function YenKSP(Graph, source, sink, K):
//Determine the shortest path from the source to the sink.
A[0] = Dijkstra(Graph, source, sink);
// Initialize the heap to store the potential kth shortest path.
B = [];
for k from 1 to K:
// The spur node ranges from the first node to the next to last node in the shortest path.
for i from 0 to size(A[i]) − 1:
// Spur node is retrieved from the previous k-shortest path, k − 1.
spurNode = A[k-1].node(i);
// The sequence of nodes from the source to the spur node of the previous k-shortest path.
rootPath = A[k-1].nodes(0, i);
for each path p in A:
if rootPath == p.nodes(0, i):
// Remove the links that are part of the previous shortest paths which share the same root path.
remove p.edge(i, i) from Graph;
// Calculate the spur path from the spur node to the sink.
spurPath = Dijkstra(Graph, spurNode, sink);
// Entire path is made up of the root path and spur path.
totalPath = rootPath + spurPath;
// Add the potential k-shortest path to the heap.
B.append(totalPath);
// Add back the edges that were removed from the graph.
restore edges to Graph;
// Sort the potential k-shortest paths by cost.
B.sort();
// Add the lowest cost path becomes the k-shortest path.
A[k] = B[0];
return A;
主要的问题是我还不能为此编写正确的python脚本(删除边缘并将它们正确地放回原处),因此我只能像往常一样依靠Igraph来达到此目的:
def yenksp(graph,source,sink, k):
global distance
"""Determine the shortest path from the source to the sink."""
a = graph.get_shortest_paths(source, sink, weights=distance, mode=ALL, output="vpath")[0]
b = [] #Initialize the heap to store the potential kth shortest path
#for xk in range(1,k):
for xk in range(1,k+1):
#for i in range(0,len(a)-1):
for i in range(0,len(a)):
if i != len(a[:-1])-1:
spurnode = a[i]
rootpath = a[0:i]
#I should remove edges part of the previous shortest paths, but...:
for p in a:
if rootpath == p:
graph.delete_edges(i)
spurpath = graph.get_shortest_paths(spurnode, sink, weights=distance, mode=ALL, output="vpath")[0]
totalpath = rootpath + spurpath
b.append(totalpath)
# should restore the edges
# graph.add_edges([(0,i)])
graph.add_edges(i)
b.sort()
a[k] = b[0]
return a
这是一次非常糟糕的尝试,它只返回列表中的一个列表
我现在不太确定我在做什么,我已经非常渴望这个问题,在最后几天,我对此的观点已经改变了180度,甚至一次.
我只是尽力而为的菜鸟.请帮忙.也可以建议使用Networkx.
附言可能没有其他可行的解决方法,因为我们已经在这里进行了研究.我已经收到很多建议,而且我对社区有很多欠. DFS或BFS无法正常工作.图是巨大的.
编辑:我一直在纠正python脚本.简而言之,这个问题的目的是正确的脚本.
解决方法:
在Github,YenKSP上有一个Yen’s KSP的python实现.完全感谢作者,此处给出了算法的核心:
def ksp_yen(graph, node_start, node_end, max_k=2):
distances, previous = dijkstra(graph, node_start)
A = [{'cost': distances[node_end],
'path': path(previous, node_start, node_end)}]
B = []
if not A[0]['path']: return A
for k in range(1, max_k):
for i in range(0, len(A[-1]['path']) - 1):
node_spur = A[-1]['path'][i]
path_root = A[-1]['path'][:i+1]
edges_removed = []
for path_k in A:
curr_path = path_k['path']
if len(curr_path) > i and path_root == curr_path[:i+1]:
cost = graph.remove_edge(curr_path[i], curr_path[i+1])
if cost == -1:
continue
edges_removed.append([curr_path[i], curr_path[i+1], cost])
path_spur = dijkstra(graph, node_spur, node_end)
if path_spur['path']:
path_total = path_root[:-1] + path_spur['path']
dist_total = distances[node_spur] + path_spur['cost']
potential_k = {'cost': dist_total, 'path': path_total}
if not (potential_k in B):
B.append(potential_k)
for edge in edges_removed:
graph.add_edge(edge[0], edge[1], edge[2])
if len(B):
B = sorted(B, key=itemgetter('cost'))
A.append(B[0])
B.pop(0)
else:
break
return A
标签:igraph,graph,path,networkx,python
最后
以上就是标致煎蛋为你收集整理的python的networkx 算法_python-Igraph / networkx中的k最短路径实现(日元算法)的全部内容,希望文章能够帮你解决python的networkx 算法_python-Igraph / networkx中的k最短路径实现(日元算法)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复