我是靠谱客的博主 从容蜜蜂,最近开发中收集的这篇文章主要介绍【ClickHouse 技术系列】- ClickHouse 中的嵌套数据结构ClickHouse 中的嵌套数据结构,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

译者

何源(荆杭),阿里云计算平台事业部高级产品专家

前言

本文翻译自 Altinity 针对 ClickHouse 的系列技术文章。面向联机分析处理(OLAP)的开源分析引擎 ClickHouse,因其优良的查询性能,PB 级的数据规模,简单的架构,被国内外公司广泛采用。

阿里云 EMR-OLAP 团队,基于开源 ClickHouse 进行了系列优化,提供了开源 OLAP 分析引擎 ClickHouse 的云上托管服务。EMR ClickHouse 完全兼容开源版本的产品特性,同时提供集群快速部署、集群管理、扩容、缩容和监控告警等云上产品功能,并且在开源的基础上优化了 ClickHouse 的读写性能,提升了 ClickHouse 与 EMR 其他组件快速集成的能力。访问https://help.aliyun.com/document_detail/212195.html
了解详情。


ClickHouse 中的嵌套数据结构

在这篇博客文章中,我们将了解 ClickHouse for MySQL 中的嵌套数据结构,以及如何将其与 PMM 结合使用来查看查询。

嵌套结构在关系数据库管理系统中并不常见。通常情况下,它只是平面表。有时,将非结构化信息存储在结构化数据库中会很方便。

我们正在努力将 ClickHouse 调整为用于 Percona 监控和管理 (PMM) 的长期存储,尤其是存储有关查询的详细信息。我们试图解决的问题之一是,对导致特定查询失败的不同错误进行计数。

例如,对于日期为 2017-08-17 的查询:

"SELECT foo FROM bar WHERE id=?"

被执行了 1000 次。其中 25 次失败的错误代码为“1212”,8 次失败的错误代码为“1250”。当然,在关系数据中进行存储的传统方法是创建一个表 "Date, QueryID, ErrorCode, ErrorCnt",然后对这个表执行 JOIN。遗憾的是,列式数据库在多个 Join 的情况下表现不佳,通常建议使用非规范化表。

我们可以为每个可能的 ErrorCode 创建一个列,但这并不是最优解。可能有成千上万的列,而且大多数时候它们都是空的。

在这种情况下,ClickHouse 提出了嵌套数据结构。对于我们的情况,这些可以定义为:

CREATE TABLE queries
(
    Period Date,
    QueryID UInt32,
    Fingerprint String,
    Errors Nested
    (
        ErrorCode String,
        ErrorCnt UInt32
    )
)Engine=MergeTree(Period,QueryID,8192);

这个解决方案有明显的问题:我们如何在这个表中插入数据?我们如何提取它?

我们先从 INSERT 开始。插入可能如下所示:

INSERT INTO queries VALUES ('2017-08-17',5,'SELECT foo FROM bar WHERE id=?',['1220','1230','1212'],[5,6,2])

这意味着 2017-08-17 期间插入的查询出现了 5 次错误 1220,6 次错误 1230,2 次错误 1212。

那么在不同的日期,它可能会产生不同的错误:

INSERT INTO queries VALUES ('2017-08-18',5,'SELECT foo FROM bar WHERE id=?',['1220','1240','1258'],[3,2,1])

让我们看一下 SELECT 数据的方法。非常基础的 SELECT:

SELECT *
FROM queries
|_____Period_|_QueryID_|_Fingerprint_|_Errors.ErrorCode_______|_Errors.ErrorCnt_|
| 2017-08-17 |       5 | SELECT foo  | ['1220','1230','1212'] | [5,6,2]         |
| 2017-08-18 |       5 | SELECT foo  | ['1220','1240','1260'] | [3,16,12]       |
|____________|_________|_____________|________________________|_________________|

如果我们想使用更熟悉的表格输出,则可以使用 ARRAY JOIN 扩展:

SELECT *
FROM queries
ARRAY JOIN Errors
┌─────Period─┬─QueryID─┬─Fingerprint─┬─Errors.ErrorCode─┬─Errors.ErrorCnt─┐
│ 2017-08-17 │       5 │ SELECT foo  │ 1220             │            5    │
│ 2017-08-17 │       5 │ SELECT foo  │ 1230             │            6    │
│ 2017-08-17 │       5 │ SELECT foo  │ 1212             │            2    │
│ 2017-08-18 │       5 │ SELECT foo  │ 1220             │            3    │
│ 2017-08-18 │       5 │ SELECT foo  │ 1240             │           16    │
│ 2017-08-18 │       5 │ SELECT foo  │ 1260             │           12    │
└────────────┴─────────┴─────────────┴──────────────────┴─────────────────┘

但是,通常我们希望看到多个期间的聚合,这可以通过传统的聚合函数来完成:

SELECT 
    QueryID,
    Errors.ErrorCode,
    SUM(Errors.ErrorCnt)
FROM queries
ARRAY JOIN Errors
GROUP BY 
    QueryID,
    Errors.ErrorCode
┌─QueryID─┬─Errors.ErrorCode─┬─SUM(Errors.ErrorCnt)─┐
│       5 │ 1212             │                 2    │
│       5 │ 1230             │                 6    │
│       5 │ 1260             │                12    │
│       5 │ 1240             │                16    │
│       5 │ 1220             │                 8    │
└─────────┴──────────────────┴──────────────────────┘

如果我们别出心裁,每个 QueryID 只返回一行,我们也可以这么做:

SELECT 
    QueryID, 
    groupArray((ecode, cnt))
FROM 
(
    SELECT 
        QueryID, 
        ecode, 
        sum(ecnt) AS cnt
    FROM queries 
    ARRAY JOIN 
        Errors.ErrorCode AS ecode, 
        Errors.ErrorCnt AS ecnt
    GROUP BY 
        QueryID, 
        ecode
) 
GROUP BY QueryID
┌─QueryID─┬─groupArray(tuple(ecode, cnt))──────────────────────────────┐
│       5 │ [('1230',6),('1212',2),('1260',12),('1220',8),('1240',16)] │
└─────────┴────────────────────────────────────────────────────────────┘

结论

ClickHouse 提供了灵活的方式来存储数据,尽管它是一个列式数据库,但可以实现较低的结构化程度,并提供各种函数来提取和聚合数据。

后续

您已经了解了在 ClickHouse 中处理实时更新相关内容,本系列还包括其他内容:

  • 在 ClickHouse 中处理实时更新

  • 使用新的 TTL move,将数据存储在合适的地方

  • 在 ClickHouse 物化视图中使用 Join

  • ClickHouse 聚合函数和聚合状态

  • ClickHouse 中的嵌套数据结构(本文)


原文链接:
https://altinity.com/blog/2017/8/30/nested-data-structures-in-clickhouse

获取更多 EMR ClickHouse 相关信息,可查看产品文档:

https://help.aliyun.com/document_detail/212195.html

钉钉扫描下方二维码加入产品交流群一起参与讨论~

feb6e7a3fbe11024885961f3f4ed2172.png

最后

以上就是从容蜜蜂为你收集整理的【ClickHouse 技术系列】- ClickHouse 中的嵌套数据结构ClickHouse 中的嵌套数据结构的全部内容,希望文章能够帮你解决【ClickHouse 技术系列】- ClickHouse 中的嵌套数据结构ClickHouse 中的嵌套数据结构所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(64)

评论列表共有 0 条评论

立即
投稿
返回
顶部