概述
1:解决的问题模型如下:
或者约束条件可以适当的松弛,即为如下模型:
当然约束条件取l2l2范数,bb数据获取的比较准确,结果逼近的效果更好,防止过拟合。如果取l1l1 范数,则是获取的bb数据,受到污染比较严重。并且bb 本身就是稀疏的。这也是人的经验对于模型的成功也是很重要的。
2:几类优化算法
(1)梯度投影算法Gradient Projection Methods
原问题可以变为如下问题:
下面介绍两种方法对其进行处理。
i)上式又等价于:
所以就有如下记号和约定:
更新zkzk 时沿着负梯度的方向下降最快。但是只是局部最小值。
其中akak 是步长,可以用线搜索的方法来确定最优步长。
下介绍第二种方法 truncated Newton interior-point method.
ii)上式又等价于:
利用内点法的把约束条件给罚到目标函数上去。
在这里我们对约束条件利用logarithmic barrier函数进行改写。
在这里,我们可以看到当xixi 越接近ui或者−uiui或者−ui的时候,函数值会变得越大。当xixi 无限趋近于ui或者−uiui或者−ui时,则函数值无限趋于无穷大。所以只有当xixi 趋近于0时候,函数值才趋近于一个常数。
所以上式可以等价于如下模型:
然后利用牛顿算法进行求解计算。
(2)迭代阈值收缩算法 Iterative Shrinkage-Thresholding Methods
对于一般的模型:
其中:
对f(x)f(x) 二次近似。则问题转变成如下:
可以适用迭代阈值算法。关于l_{1}范数最优化的迭代阈值算法的证明可以参见我的另一篇博客
(3)近端梯度算法 Proximal gradient method
其处理的模型如下:
其中f(x)f(x)是连续可微的,微分函数满足利普希茨条件成立:
其中LL相当于代替f(x)f(x)的二阶偏导。
那么可以进行如下算法来解决问题:
说明:
第一步的更新:按照f(x)f(x)沿着负梯度的方向下降最快
第二步的更新:有数值解,进行软阈值操作。
(4)交替方向法 Alternating Direction Methods
其实利用的是拉格朗日算法,来进行更新出来。解决的模型如下:
其拉格朗日函数如下:
问题变为分别最小化x,e,yx,e,y。
说明:
更新ee时,固定x,yx,y,直接求导,ee有数值解。
更新xx 时,固定e,ye,y经过化简,可以运用软阈值进行操作计算。
更新yy时,固定x,ex,e,直接求导,yy有数值解。
Fast ℓ 1-minimization algorithms and an application in robust face recognition
最后
以上就是会撒娇往事为你收集整理的l1范数最小化快速算法【文献阅读】的全部内容,希望文章能够帮你解决l1范数最小化快速算法【文献阅读】所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复