我是靠谱客的博主 冷傲帽子,最近开发中收集的这篇文章主要介绍如何限流,具体实现有哪些?,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

什么是限流

限流可以认为服务降级的一种,限流就是限制系统的输入和输出流量已达到保护系统 的目的。一般来说系统的吞吐量是可以被测算的,为了保证系统的稳定运行,一旦达到的需要限制的阈值,就需要限制流量并采取一些措施以完成限制流量的目的。比如:延迟处理,拒绝处理,或者部分拒绝处理等等。

比如场景:

某天小明突然发现自己的接口请求突然之间涨到了原来的10倍,接口几乎不能使用,产生了一系列连锁反应,导致了整个系统崩溃。这就好比,老电闸中都安装了保险丝,一旦使用大功率设备,保险丝就会熔断,保证各个电器不被强电流烧坏,系统也同样安装保险丝,防止非预期请求过大,引起系统瘫痪。

限流方法

常用的限流算法有:计数法,滑动窗口计数法,漏桶算法和令牌桶算法。

漏桶算法思路

水(请求)进入到漏桶里,漏桶以一定的速度流出,当水流的速度过大会直接溢出, 漏桶是强行限制了数据的传输速率。
在这里插入图片描述

令牌桶算法

除了要能够限制数据的平均传输速率外,还需要允许某种程度的突发请求,令牌桶更为合适。

令牌桶的思路是以一个恒定的速率往桶里放令牌,如果请求需要被处理,则需要从桶里取出一个令牌,如果没有令牌可取,那么就拒绝服务。

在这里插入图片描述
Google开源工具包Guava提供了限流工具类RateLimiter是基于令牌桶算法来实现的。

public double acquire() {
        return acquire(1);
    }

 public double acquire(int permits) {
        checkPermits(permits);  //检查参数是否合法(是否大于0)
        long microsToWait;
        synchronized (mutex) { //应对并发情况需要同步
            microsToWait = reserveNextTicket(permits, readSafeMicros()); //获得需要等待的时间 
        }
        ticker.sleepMicrosUninterruptibly(microsToWait); //等待,当未达到限制时,microsToWait为0
        return 1.0 * microsToWait / TimeUnit.SECONDS.toMicros(1L);
    }

private long reserveNextTicket(double requiredPermits, long nowMicros) {
        resync(nowMicros); //补充令牌
        long microsToNextFreeTicket = nextFreeTicketMicros - nowMicros;
        double storedPermitsToSpend = Math.min(requiredPermits, this.storedPermits); //获取这次请求消耗的令牌数目
        double freshPermits = requiredPermits - storedPermitsToSpend;

        long waitMicros = storedPermitsToWaitTime(this.storedPermits, storedPermitsToSpend)
                + (long) (freshPermits * stableIntervalMicros); 

        this.nextFreeTicketMicros = nextFreeTicketMicros + waitMicros;
        this.storedPermits -= storedPermitsToSpend; // 减去消耗的令牌
        return microsToNextFreeTicket;
    }

private void resync(long nowMicros) {
        // if nextFreeTicket is in the past, resync to now
        if (nowMicros > nextFreeTicketMicros) {
            storedPermits = Math.min(maxPermits,
                    storedPermits + (nowMicros - nextFreeTicketMicros) / stableIntervalMicros);
            nextFreeTicketMicros = nowMicros;
        }
    }

计数器

控制单位时间内的请求数量

import java.util.concurrent.atomic.AtomicInteger;

public class Counter {

    /**
     * 最大访问数量
     */
    private final int limit = 10;

    /**
     * 访问时间差
     */
    private final long timeout = 1000;

    /**
     * 请求时间
     */
    private long time;

    /**
     * 当前计数器
     */
    private AtomicInteger reqCount = new AtomicInteger(0);


    public boolean limit() {
        long now = System.currentTimeMillis();
        if (now < time + timeout) {
            // 单位时间内
            reqCount.getAndAdd(1);
            return reqCount.get() <= limit;
        } else {
            // 超出单位时间
            time = now;
            reqCount = new AtomicInteger(0);
            return true;
        }

    }

    public static void main(String[] args) {

    }

}
计数方式有没有问题?

假设每分钟请求数量为 60 个,每秒钟系统可以处理1个请求,用户在00:59 发送了60 个请求,然后在 1:00 发生了60个请求,此时 2 秒内有120个请求(每秒60)个请求,这样的方式并没有实现限制流量,因为每分钟可以处理60个,但是实际上这60个是一秒钟发过来的。

滑动窗口计数

滑动窗口是对计数方式对改进,增加一个时间粒度的度量单位。

把一分钟分成了若干等份,比如分成6份, 每份10s, 在一份独立计数器上,在 00:00-00:09 之间计数器累加1, 当等份数量越大,限流统计越详细。

package ratelimit;


import java.util.Iterator;
import java.util.Random;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.stream.IntStream;

public class TimeWindow {
    private ConcurrentLinkedQueue<Long> queue = new ConcurrentLinkedQueue<Long>();

    /**a
     * 间隔秒数
     */
    private int seconds;

    /**
     * 最大限流
     */
    private int max;

    public TimeWindow(int max, int seconds) {
        this.seconds = seconds;
        this.max = max;

        new Thread(() -> {
            while (true) {
                try {
                    Thread.sleep((seconds - 1) * 1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                clean();
            }
        }).start();
    }

    public static void main(String[] args) {
        final TimeWindow timeWindow = new TimeWindow(10, 1);
        IntStream.range(0, 3).forEach((i) -> {
            new Thread(() -> {
                try {
                    while (true) {
                        Thread.sleep(new Random().nextInt(20) * 100);

                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                timeWindow.take();
            }).start();
        });
    }

    public void take() {
        long start = System.currentTimeMillis();
        int size = sizeOfValid();
        if (size > max) {
            System.out.println("超限");
        }
        synchronized (queue) {
            if (sizeOfValid() > max) {
                System.err.println("超限");
                System.err.println("queue 中有:" + queue.size() + "最大数量:" + max);
            }
            this.queue.offer(System.currentTimeMillis());
        }
        System.err.println("queue 中有:" + queue.size() + "最大数量:" + max);

    }

    private int sizeOfValid() {
        Iterator<Long> it = queue.iterator();
        Long ms = System.currentTimeMillis() - seconds * 1000;
        int count = 0;
        while (it.hasNext()) {
            long t = it.next();
            if (t > ms) {
                //在时间窗口范围内
                count++;
            }
        }
        return count;
    }

    public void clean() {
        Long c = System.currentTimeMillis() - seconds * 1000;
        Long t1 = null;
        while ((t1 = queue.peek()) != null && t1 < c) {
            System.out.println("数据清理");
            queue.poll();
        }
    }
}

令牌桶问题

令牌桶规定固定容量的桶,令牌 token 以固定速度往桶内填充,当桶填满时 token 不会继续放入,每过来一个请求把 token 从桶中移除,当没有 token 可以获取时,拒绝请求。

令牌桶算法

当网络设备衡量流量是否超过额定带宽时,需要查看令牌桶,而令牌桶中会放置一定数量的令牌,一个令牌允许接口发送或接收1bit数据(有时是1 Byte数据),当接口通过1bit数据后,同时也要从桶中移除一个令牌。当桶里没有令牌的时候,任何流量都被视为超过额定带宽,只有当桶中有令牌时,数据才可以通过接口。令牌桶中的令牌不仅仅可以被移除,同样也可以往里添加,所以为了保证接口随时有数据通过,就必须不停地往桶里加令牌,由此可见,往桶里加令牌的速度,就决定了数据通过接口的速度。 因此,我们通过控制往令牌桶里加令牌的速度从而控制用户流量的带宽。而设置的这个用户传输数据的速率被称为承诺信息速率(CIR),通常以秒为单位。比如我们设置用户的带宽为1000 bit每秒,只要保证每秒钟往桶里添加1000个令牌即可。
在这里插入图片描述

令牌桶可以用来保护自己,主要用来对调用者频率进行限流,为的是不让自己的系统垮掉。

令牌桶算法代码

package com.netease.datastream.util.flowcontrol;

import java.io.BufferedWriter;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.util.Random;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;


/**
 * <pre>
 * Created by inter12 on 15-3-18.
 * </pre>
 */
public class TokenBucket {

    // 默认桶大小个数 即最大瞬间流量是64M
    private static final int DEFAULT_BUCKET_SIZE = 1024 * 1024 * 64;

    // 一个桶的单位是1字节
    private int everyTokenSize = 1;

    // 瞬间最大流量
    private int maxFlowRate;

    // 平均流量
    private int avgFlowRate;

    // 队列来缓存桶数量:最大的流量峰值就是 = everyTokenSize*DEFAULT_BUCKET_SIZE 64M = 1 * 1024 *
    // 1024 * 64
    private ArrayBlockingQueue<Byte> tokenQueue = new ArrayBlockingQueue<Byte>(
            DEFAULT_BUCKET_SIZE);

    private ScheduledExecutorService scheduledExecutorService = Executors
            .newSingleThreadScheduledExecutor();

    private volatile boolean isStart = false;

    private ReentrantLock lock = new ReentrantLock(true);

    private static final byte A_CHAR = 'a';

    public TokenBucket() {
    }

    public TokenBucket(int maxFlowRate, int avgFlowRate) {
        this.maxFlowRate = maxFlowRate;
        this.avgFlowRate = avgFlowRate;
    }

    public TokenBucket(int everyTokenSize, int maxFlowRate, int avgFlowRate) {
        this.everyTokenSize = everyTokenSize;
        this.maxFlowRate = maxFlowRate;
        this.avgFlowRate = avgFlowRate;
    }

    public void addTokens(Integer tokenNum) {

        // 若是桶已经满了,就不再家如新的令牌
        for (int i = 0; i < tokenNum; i++) {
            tokenQueue.offer(Byte.valueOf(A_CHAR));
        }
    }

    public TokenBucket build() {

        start();
        return this;
    }

    /**
     * 获取足够的令牌个数
     * 
     * @return
     */
    public boolean getTokens(byte[] dataSize) {

//        Preconditions.checkNotNull(dataSize);
//        Preconditions.checkArgument(isStart,
//                "please invoke start method first !");

        int needTokenNum = dataSize.length / everyTokenSize + 1;// 传输内容大小对应的桶个数

        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            boolean result = needTokenNum <= tokenQueue.size(); // 是否存在足够的桶数量
            if (!result) {
                return false;
            }

            int tokenCount = 0;
            for (int i = 0; i < needTokenNum; i++) {
                Byte poll = tokenQueue.poll();
                if (poll != null) {
                    tokenCount++;
                }
            }

            return tokenCount == needTokenNum;
        } finally {
            lock.unlock();
        }
    }

    public void start() {

        // 初始化桶队列大小
        if (maxFlowRate != 0) {
            tokenQueue = new ArrayBlockingQueue<Byte>(maxFlowRate);
        }

        // 初始化令牌生产者
        TokenProducer tokenProducer = new TokenProducer(avgFlowRate, this);
        scheduledExecutorService.scheduleAtFixedRate(tokenProducer, 0, 1,
                TimeUnit.SECONDS);
        isStart = true;

    }

    public void stop() {
        isStart = false;
        scheduledExecutorService.shutdown();
    }

    public boolean isStarted() {
        return isStart;
    }

    class TokenProducer implements Runnable {

        private int avgFlowRate;
        private TokenBucket tokenBucket;

        public TokenProducer(int avgFlowRate, TokenBucket tokenBucket) {
            this.avgFlowRate = avgFlowRate;
            this.tokenBucket = tokenBucket;
        }

        @Override
        public void run() {
            tokenBucket.addTokens(avgFlowRate);
        }
    }

    public static TokenBucket newBuilder() {
        return new TokenBucket();
    }

    public TokenBucket everyTokenSize(int everyTokenSize) {
        this.everyTokenSize = everyTokenSize;
        return this;
    }

    public TokenBucket maxFlowRate(int maxFlowRate) {
        this.maxFlowRate = maxFlowRate;
        return this;
    }

    public TokenBucket avgFlowRate(int avgFlowRate) {
        this.avgFlowRate = avgFlowRate;
        return this;
    }

    private String stringCopy(String data, int copyNum) {

        StringBuilder sbuilder = new StringBuilder(data.length() * copyNum);

        for (int i = 0; i < copyNum; i++) {
            sbuilder.append(data);
        }

        return sbuilder.toString();

    }

    public static void main(String[] args) throws IOException,
            InterruptedException {

        tokenTest();
    }

    private static void arrayTest() {
        ArrayBlockingQueue<Integer> tokenQueue = new ArrayBlockingQueue<Integer>(
                10);
        tokenQueue.offer(1);
        tokenQueue.offer(1);
        tokenQueue.offer(1);
        System.out.println(tokenQueue.size());
        System.out.println(tokenQueue.remainingCapacity());
    }

    private static void tokenTest() throws InterruptedException, IOException {
        TokenBucket tokenBucket = TokenBucket.newBuilder().avgFlowRate(512)
                .maxFlowRate(1024).build();

        BufferedWriter bufferedWriter = new BufferedWriter(
                new OutputStreamWriter(new FileOutputStream("D:/ds_test")));
        String data = "xxxx";// 四个字节
        for (int i = 1; i <= 1000; i++) {

            Random random = new Random();
            int i1 = random.nextInt(100);
            boolean tokens = tokenBucket.getTokens(tokenBucket.stringCopy(data,
                    i1).getBytes());
            TimeUnit.MILLISECONDS.sleep(100);
            if (tokens) {
                bufferedWriter.write("token pass --- index:" + i1);
                System.out.println("token pass --- index:" + i1);
            } else {
                bufferedWriter.write("token rejuect --- index" + i1);
                System.out.println("token rejuect --- index" + i1);
            }

            bufferedWriter.newLine();
            bufferedWriter.flush();
        }

        bufferedWriter.close();
    }

}
令牌桶和漏桶的选择问题

如果要让自己的系统不被打垮,用令牌桶,如果保证别人的系统不被打垮,用漏桶算法。

内推链接:https://job.toutiao.com/referral/mobile/spring-referral?token=MzsxNjIwMzgzNzA2MzYyOzY5Mzk2OTkyMjAwODk2NjkxNTE7MA

欢迎关注公众号:程序员开发者社区

在这里插入图片描述

参考资料

  • https://www.cnblogs.com/xuwc/p/9123078.html

最后

以上就是冷傲帽子为你收集整理的如何限流,具体实现有哪些?的全部内容,希望文章能够帮你解决如何限流,具体实现有哪些?所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(43)

评论列表共有 0 条评论

立即
投稿
返回
顶部