我是靠谱客的博主 无私皮卡丘,最近开发中收集的这篇文章主要介绍人脸检测、人脸定位、人脸对齐、MTCNN、人脸识别(衡量人脸的相似或不同:softmax、三元组损失Triplet Loss、中心损失Center Loss、ArcFace)日萌社,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

日萌社

人工智能AI:Keras PyTorch MXNet TensorFlow PaddlePaddle 深度学习实战(不定时更新)


# ArcFace
class ArcMarginProduct(nn.Module):
    r"""Implement of large margin arc distance: :
        Args:
            in_features: size of each input sample
            out_features: size of each output sample
            s: norm of input feature
            m: margin

            cos(theta + m)
        """

    def __init__(self, in_features, out_features, s=30.0, m=0.50, easy_margin=False):
        super(ArcMarginProduct, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.s = s
        self.m = m
        # 初始化权重
        self.weight = Parameter(torch.FloatTensor(out_features, in_features))
        nn.init.xavier_uniform_(self.weight)

        self.easy_margin = easy_margin
        self.cos_m = math.cos(m)
        self.sin_m = math.sin(m)
        self.th = math.cos(math.pi - m)
        self.mm = math.sin(math.pi - m) * m

    def forward(self, input, label):
        # cos(theta) & phi(theta)
        # torch.nn.functional.linear(input, weight, bias=None)
        # y=x*W^T+b
        cosine = F.linear(F.normalize(input), F.normalize(self.weight))
        sine = torch.sqrt(1.0 - torch.pow(cosine, 2))
        # cos(a+b)=cos(a)*cos(b)-size(a)*sin(b)
        phi = cosine * self.cos_m - sine * self.sin_m
        if self.easy_margin:
            # torch.where(condition, x, y) → Tensor
            # condition (ByteTensor) – When True (nonzero), yield x, otherwise yield y
            # x (Tensor) – values selected at indices where condition is True
            # y (Tensor) – values selected at indices where condition is False
            # return:
            # A tensor of shape equal to the broadcasted shape of condition, x, y
            # cosine>0 means two class is similar, thus use the phi which make it
            phi = torch.where(cosine > 0, phi, cosine)
        else:
            phi = torch.where(cosine > self.th, phi, cosine - self.mm)
        # convert label to one-hot
        # one_hot = torch.zeros(cosine.size(), requires_grad=True, device='cuda')
        # 将cos(theta + m)更新到tensor相应的位置中
        one_hot = torch.zeros(cosine.size(), device='cuda')
        # scatter_(dim, index, src)
        one_hot.scatter_(1, label.view(-1, 1).long(), 1)
        # torch.where(out_i = {x_i if condition_i else y_i) 
        output = (one_hot * phi) + ((1.0 - one_hot) * cosine)
        output *= self.s

        return output

from PIL import Image
from detector import detect_faces
from visualization_utils import show_results

img = Image.open('some_img.jpg') # modify the image path to yours
bounding_boxes, landmarks = detect_faces(img) # detect bboxes and landmarks for all faces in the image
show_results(img, bounding_boxes, landmarks) # visualize the results
from PIL import Image
from face_dect_recong.align.detector import detect_faces
from face_dect_recong.align.visualization_utils import show_results
%matplotlib inline

img = Image.open('./data/other_my_face/my/my/myf112.jpg') 
bounding_boxes, landmarks = detect_faces(img) # detect bboxes and landmarks for all faces in the image
show_results(img, bounding_boxes, landmarks) # visualize the results

 

from PIL import Image
from face_dect_recong.align.detector import detect_faces
from face_dect_recong.align.visualization_utils import show_results
%matplotlib inline

img = Image.open('./data/other_my_face/others/Woody_Allen/Woody_Allen_0001.jpg') 
bounding_boxes, landmarks = detect_faces(img) 
show_results(img, bounding_boxes, landmarks) 

 

#对其他人的图像进行检测
%run face_dect_recong/align/face_align.py -source_root './data/other_my_face/others/' -dest_root './data/other_my_face_align/others' -crop_size 128


#对我的图像进行检测
%run face_dect_recong/align/face_align.py -source_root './data/other_my_face/my/' -dest_root './data/other_my_face_align/others/' -crop_size 128
import matplotlib.pyplot as plt
from matplotlib.image import imread
%matplotlib inline

img=imread('./data/other_my_face_align/others/my/myf112.jpg')
plt.imshow(img)
plt.show

 

img=imread('./data/other_my_face_align/others/Woody_Allen/Woody_Allen_0002.jpg')
plt.imshow(img)
plt.show

 

#删除小于4张的一些人
%run face_dect_recong/balance/remove_lowshot.py -root './data/other_my_face_align/others' -min_num 4

img=imread('./data/dataset/lfw/lfw-align-128/Zico/Zico_0001.jpg')
plt.imshow(img)
plt.show

class Config(object):
    env = 'default'
    backbone = 'resnet18'
    classify = 'softmax'
    
    metric = 'arc_margin'
    easy_margin = False
    #是否使用压缩奖惩网络模块(Squeeze-and-Excitation Blocks)
    use_se = False
    loss = 'focal_loss'

    display = False
    finetune = False
 
    lfw_root = '/home/wumg/data/data/other_my_face_align/others'
 
    lfw_test_list = '/home/wumg/data/data/other_my_face_align/others_test_pair.txt'
    test_model_path = '/home/wumg/data/data/dataset/lfw/resnet18_110.pth'
    save_interval = 10

    train_batch_size = 16  # batch size
    test_batch_size = 60

    input_shape = (1, 128, 128)

    optimizer = 'sgd'

    use_gpu = True  # use GPU or not
    gpu_id = '0, 1'
    num_workers = 4  # how many workers for loading data
   
    max_epoch = 2
    lr = 1e-1  # initial learning rate
    lr_step = 10
    lr_decay = 0.95  # when val_loss increase, lr = lr*lr_decay
    weight_decay = 5e-4
from __future__ import print_function
import os
import cv2
from models import *
import torch
import torch.nn as nn
import numpy as np
import time
from torch.nn import DataParallel
import torch.utils.model_zoo as model_zoo
import torch.nn.functional as F

model_urls = {
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth'
    }

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")


def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out
    
class IRBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True):
        super(IRBlock, self).__init__()
        self.bn0 = nn.BatchNorm2d(inplanes)
        self.conv1 = conv3x3(inplanes, inplanes)
        self.bn1 = nn.BatchNorm2d(inplanes)
        self.prelu = nn.PReLU()
        self.conv2 = conv3x3(inplanes, planes, stride)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride
        self.use_se = use_se
        if self.use_se:
            self.se = SEBlock(planes)

    def forward(self, x):
        residual = x
        out = self.bn0(x)
        out = self.conv1(out)
        out = self.bn1(out)
        out = self.prelu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        if self.use_se:
            out = self.se(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.prelu(out)

        return out


class ResNetFace(nn.Module):
    def __init__(self, block, layers, use_se=True):
        self.inplanes = 64
        self.use_se = use_se
        super(ResNetFace, self).__init__()
        self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.prelu = nn.PReLU()
        self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.bn4 = nn.BatchNorm2d(512)
        self.dropout = nn.Dropout()
        self.fc5 = nn.Linear(512 * 8 * 8, 512)
        self.bn5 = nn.BatchNorm1d(512)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_normal_(m.weight)
            elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.xavier_normal_(m.weight)
                nn.init.constant_(m.bias, 0)

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )
        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample, use_se=self.use_se))
        self.inplanes = planes
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, use_se=self.use_se))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.prelu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.bn4(x)
        x = self.dropout(x)
        x = x.view(x.size(0), -1)
        x = self.fc5(x)
        x = self.bn5(x)

        return x



class ResNet(nn.Module):

    def __init__(self, block, layers):
        self.inplanes = 64
        super(ResNet, self).__init__()
        # self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
        #                        bias=False)
        self.conv1 = nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        # self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0], stride=2)
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.fc5 = nn.Linear(512 * 8 * 8, 512)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        # x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        # x = nn.AvgPool2d(kernel_size=x.size()[2:])(x)
        # x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc5(x)

        return x


def resnet18(pretrained=False, **kwargs):
    """Constructs a ResNet-18 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
    return model

def resnet_face18(use_se=True, **kwargs):
    model = ResNetFace(IRBlock, [2, 2, 2, 2], use_se=use_se, **kwargs)
    return model

def get_lfw_list(pair_list):
    with open(pair_list, 'r') as fd:
        pairs = fd.readlines()
    data_list = []
    for pair in pairs:
        splits = pair.split()

        if splits[0] not in data_list:
            data_list.append(splits[0])

        if splits[1] not in data_list:
            data_list.append(splits[1])
    return data_list


def load_image(img_path):
    image = cv2.imread(img_path, 0)
    if image is None:
        return None
    image = np.dstack((image, np.fliplr(image)))
    image = image.transpose((2, 0, 1))
    image = image[:, np.newaxis, :, :]
    image = image.astype(np.float32, copy=False)
    image -= 127.5
    image /= 127.5
    return image


def get_featurs(model, test_list, batch_size=10):
    images = None
    features = None
    cnt = 0
    for i, img_path in enumerate(test_list):
        image = load_image(img_path)
        if image is None:
            print('read {} error'.format(img_path))

        if images is None:
            images = image
        else:
            images = np.concatenate((images, image), axis=0)

        if images.shape[0] % batch_size == 0 or i == len(test_list) - 1:
            cnt += 1

            data = torch.from_numpy(images)
            data = data.to(device)
            output = model(data)
            output = output.data.cpu().numpy()

            fe_1 = output[::2]
            fe_2 = output[1::2]
            feature = np.hstack((fe_1, fe_2))
            # print(feature.shape)

            if features is None:
                features = feature
            else:
                features = np.vstack((features, feature))

            images = None

    return features, cnt


def load_model(model, model_path):
    model_dict = model.state_dict()
    pretrained_dict = torch.load(model_path)
    pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
    model_dict.update(pretrained_dict)
    model.load_state_dict(model_dict)


def get_feature_dict(test_list, features):
    fe_dict = {}
    for i, each in enumerate(test_list):
        # key = each.split('/')[1]
        fe_dict[each] = features[i]
    return fe_dict


def cosin_metric(x1, x2):
    return np.dot(x1, x2) / (np.linalg.norm(x1) * np.linalg.norm(x2))


def cal_accuracy(y_score, y_true):
    y_score = np.asarray(y_score)
    y_true = np.asarray(y_true)
    best_acc = 0
    best_th = 0
    for i in range(len(y_score)):
        th = y_score[i]
        y_test = (y_score >= th)
        acc = np.mean((y_test == y_true).astype(int))
        if acc > best_acc:
            best_acc = acc
            best_th = th

    return (best_acc, best_th)


def test_performance(fe_dict, pair_list):
    with open(pair_list, 'r') as fd:
        pairs = fd.readlines()

    sims = []
    labels = []
    for pair in pairs:
        splits = pair.split()
        fe_1 = fe_dict[splits[0]]
        fe_2 = fe_dict[splits[1]]
        label = int(splits[2])
        sim = cosin_metric(fe_1, fe_2)

        sims.append(sim)
        labels.append(label)

    acc, th = cal_accuracy(sims, labels)
    return acc, th


def lfw_test(model, img_paths, identity_list, compair_list, batch_size):
    s = time.time()
    features, cnt = get_featurs(model, img_paths, batch_size=batch_size)
    #print(features.shape)
    t = time.time() - s
    #print('共用时间 {}, average time is {}'.format(t, t / cnt))
    fe_dict = get_feature_dict(identity_list, features)
    acc, th = test_performance(fe_dict, compair_list)
    print('准确率: ', acc, '阀值: ', th)
    return acc

opt = Config()
model = resnet_face18(opt.use_se)
#采用多GPU的数据并行处理机制
model = DataParallel(model)
#装载预训练模型
model.load_state_dict(torch.load(opt.test_model_path))
model.to(device)

identity_list = get_lfw_list(opt.lfw_test_list)
img_paths = [os.path.join(opt.lfw_root, each) for each in identity_list]

model.eval()
lfw_test(model, img_paths, identity_list, opt.lfw_test_list, opt.test_batch_size)
    

#img_path='/home/wumg/data/data/other_my_face_align/others/Wen_Jiabao/Wen_Jiabao_0002.jpg'
img_path='/home/wumg/data/data/other_my_face_align/others/my/myf241.jpg'
#img_path='/home/wumg/data/data/dataset/lfw/lfw-align-128/Wen_Jiabao/Wen_Jiabao_0002.jpg'
image = cv2.imread(img_path, 0)
if image is None:
    print("ok")

image = np.dstack((image, np.fliplr(image)))
image = image.transpose((2, 0, 1))
image = image[:, np.newaxis, :, :]
image = image.astype(np.float32, copy=False)
image -= 127.5
image /= 127.5

image.shape

from __future__ import print_function
import os
import cv2
from models import *
import torch
import numpy as np
import time
#from config import Config
from torch.nn import DataParallel


def get_lfw_list(pair_list):
    with open(pair_list, 'r') as fd:
        pairs = fd.readlines()
    data_list = []
    for pair in pairs:
        splits = pair.split()

        if splits[0] not in data_list:
            data_list.append(splits[0])

        if splits[1] not in data_list:
            data_list.append(splits[1])
    return data_list


def load_image(img_path):
    image = cv2.imread(img_path, 0)
    if image is None:
        return None
    image = np.dstack((image, np.fliplr(image)))
    image = image.transpose((2, 0, 1))
    image = image[:, np.newaxis, :, :]
    image = image.astype(np.float32, copy=False)
    image -= 127.5
    image /= 127.5
    return image


def get_featurs(model, test_list, batch_size=10):
    images = None
    features = None
    cnt = 0
    for i, img_path in enumerate(test_list):
        image = load_image(img_path)
        if image is None:
            print('read {} error'.format(img_path))

        if images is None:
            images = image
        else:
            images = np.concatenate((images, image), axis=0)

        if images.shape[0] % batch_size == 0 or i == len(test_list) - 1:
            cnt += 1

            data = torch.from_numpy(images)
            data = data.to(torch.device("cuda"))
            output = model(data)
            output = output.data.cpu().numpy()

            fe_1 = output[::2]
            fe_2 = output[1::2]
            feature = np.hstack((fe_1, fe_2))
            # print(feature.shape)

            if features is None:
                features = feature
            else:
                features = np.vstack((features, feature))

            images = None

    return features, cnt


def load_model(model, model_path):
    model_dict = model.state_dict()
    pretrained_dict = torch.load(model_path)
    pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
    model_dict.update(pretrained_dict)
    model.load_state_dict(model_dict)


def get_feature_dict(test_list, features):
    fe_dict = {}
    for i, each in enumerate(test_list):
        # key = each.split('/')[1]
        fe_dict[each] = features[i]
    return fe_dict


def cosin_metric(x1, x2):
    return np.dot(x1, x2) / (np.linalg.norm(x1) * np.linalg.norm(x2))


def cal_accuracy(y_score, y_true):
    y_score = np.asarray(y_score)
    y_true = np.asarray(y_true)
    best_acc = 0
    best_th = 0
    for i in range(len(y_score)):
        th = y_score[i]
        y_test = (y_score >= th)
        acc = np.mean((y_test == y_true).astype(int))
        if acc > best_acc:
            best_acc = acc
            best_th = th

    return (best_acc, best_th)


def test_performance(fe_dict, pair_list):
    with open(pair_list, 'r') as fd:
        pairs = fd.readlines()

    sims = []
    labels = []
    for pair in pairs:
        splits = pair.split()
        fe_1 = fe_dict[splits[0]]
        fe_2 = fe_dict[splits[1]]
        label = int(splits[2])
        sim = cosin_metric(fe_1, fe_2)

        sims.append(sim)
        labels.append(label)

    acc, th = cal_accuracy(sims, labels)
    return acc, th


def lfw_test(model, img_paths, identity_list, compair_list, batch_size):
    s = time.time()
    features, cnt = get_featurs(model, img_paths, batch_size=batch_size)
    print(features.shape)
    t = time.time() - s
    print('total time is {}, average time is {}'.format(t, t / cnt))
    fe_dict = get_feature_dict(identity_list, features)
    acc, th = test_performance(fe_dict, compair_list)
    print('lfw face verification accuracy: ', acc, 'threshold: ', th)
    return acc


if __name__ == '__main__':

    opt = Config()
    if opt.backbone == 'resnet18':
        model = resnet_face18(opt.use_se)
    elif opt.backbone == 'resnet34':
        model = resnet34()
    elif opt.backbone == 'resnet50':
        model = resnet50()

    model = DataParallel(model)
    # load_model(model, opt.test_model_path)
    model.load_state_dict(torch.load(opt.test_model_path))
    model.to(torch.device("cuda"))

    identity_list = get_lfw_list(opt.lfw_test_list)
    img_paths = [os.path.join(opt.lfw_root, each) for each in identity_list]

    model.eval()
    lfw_test(model, img_paths, identity_list, opt.lfw_test_list, opt.test_batch_size)

最后

以上就是无私皮卡丘为你收集整理的人脸检测、人脸定位、人脸对齐、MTCNN、人脸识别(衡量人脸的相似或不同:softmax、三元组损失Triplet Loss、中心损失Center Loss、ArcFace)日萌社的全部内容,希望文章能够帮你解决人脸检测、人脸定位、人脸对齐、MTCNN、人脸识别(衡量人脸的相似或不同:softmax、三元组损失Triplet Loss、中心损失Center Loss、ArcFace)日萌社所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(62)

评论列表共有 0 条评论

立即
投稿
返回
顶部