概述
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import DropPath, trunc_normal_
class layer_Norm(nn.Module):
def __init__(self, normalized_shape, eps=1e-6, data_format='channels_last'):
super(layer_Norm, self).__init__()
self.weight =nn.Parameter(torch.ones(normalized_shape), requires_grad=True)
self.bias = nn.Parameter(torch.zeros(normalized_shape), requires_grad=True)
self.eps = eps
self.data_format = data_format
if self.data_format not in ['channels_last', 'channels_first']:
raise NotImplementedError
self.normalized_shape = (normalized_shape, )
def forward(self, x):
# [batch_size, height, weight, channel]
if self.data_format == 'channels_last':
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == 'channels_first':
mean = x.mean(1, keepdim=True)
var = (x - mean).pow(2).mean(1, keepdim=True)
x = (x - mean) / torch.sqrt(var + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class Block(nn.Module):
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
super(Block, self).__init__()
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)
self.norm = layer_Norm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(dim, 4 * dim)
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 3, 1, 2)
x = input + self.drop_path(x)
return x
class ConvNeXt(nn.Module):
def __init__(self, in_channels=3, num_class=12, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0., layer_scale_init_value=1e-6, head_init_scale=1.):
super(ConvNeXt, self).__init__()
self.downsample_layers = nn.ModuleList()
stem = nn.Sequential(
nn.Conv2d(in_channels, dims[0], kernel_size=4, stride=4),
layer_Norm(dims[0], eps=1e-6, data_format='channels_first')
)
self.downsample_layers.append(stem)
for i in range(3):
downsample_layer = nn.Sequential(
layer_Norm(dims[i], eps=1e-6, data_format='channels_first'),
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2)
)
self.downsample_layers.append(downsample_layer)
self.stages = nn.ModuleList()
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
cur = 0
for i in range(4):
stage = nn.Sequential(
*[Block(dim=dims[i], drop_path=dp_rates[cur + j], layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])]
)
self.stages.append(stage)
cur += depths[i]
# self.norm = nn.LayerNorm(dims[-1], eps=1e-6)
self.norm = layer_Norm(dims[-1], eps=1e-6, data_format='channels_first')
self.head = nn.Linear(dims[-1], num_class)
self.apply(self._init_weights)
self.x4_12 = nn.Conv2d(768, num_class, kernel_size=1)
self.norm_x4_12 = layer_Norm(num_class, eps=1e-6, data_format='channels_first')
self.act = nn.GELU()
self.deconv_x4 = nn.ConvTranspose2d(num_class, num_class, 4, 2, 1)
self.norm_x3 = layer_Norm(384, eps=1e-6, data_format='channels_first')
self.x3_12 = nn.Conv2d(384, num_class, kernel_size=1)
self.deconv_x3 = nn.ConvTranspose2d(num_class, num_class, 4, 2, 1)
self.norm_x2 = layer_Norm(192, eps=1e-6, data_format='channels_first')
self.x2_12 = nn.Conv2d(192, num_class, kernel_size=1)
self.deconv_x2 = nn.ConvTranspose2d(num_class, num_class, 4, 2, 1)
self.norm_x1 = layer_Norm(96, eps=1e-6, data_format='channels_first')
self.x1_12 = nn.Conv2d(96, num_class, kernel_size=1)
self.upsample = nn.ConvTranspose2d(num_class, num_class, 8, 4, 2, bias=False)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=.02)
nn.init.constant_(m.bias, 0)
def forward_features(self, x):
x = self.downsample_layers[0](x)
x = self.stages[0](x)
x1 = x
x = self.downsample_layers[1](x)
x = self.stages[1](x)
x2 = x
x = self.downsample_layers[2](x)
x = self.stages[2](x)
x3 = x
x = self.downsample_layers[3](x)
x = self.stages[3](x)
x = self.norm(x)
return x, x3, x2, x1
def forward(self, x):
x, x3, x2, x1 = self.forward_features(x)
x4_12 = self.act(self.norm_x4_12(self.x4_12(x)))
x4_x3 = self.act(self.norm_x4_12(self.deconv_x4(x4_12)))
x3_norm = self.norm_x3(x3)
x3_12 = self.act(self.norm_x4_12(self.x3_12(x3_norm)))
x3_x4 = x4_x3 + x3_12
x43 = self.deconv_x3(x3_x4)
x2_norm = self.norm_x2(x2)
x2_12 = self.act(self.norm_x4_12(self.x2_12(x2_norm)))
x2_x3 = x2_12 + x43
x32 = self.deconv_x2(x2_x3)
x1_norm = self.norm_x1(x1)
x1_12 = self.act(self.norm_x4_12(self.x1_12(x1_norm)))
x2_x1 = x32 + x1_12
x = self.upsample(x2_x1)
# print(x.shape)
# print(x4.shape)
# print(x3.shape)
# print(x2.shape)
# print(x1.shape)
return x
if __name__ == '__main__':
rgb = torch.randn([1, 3, 224, 224])
net = ConvNeXt()
out = net(rgb)
print(out.shape)
最后
以上就是大意硬币为你收集整理的基于ConvNeXt的语义分割代码实现的全部内容,希望文章能够帮你解决基于ConvNeXt的语义分割代码实现所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复