概述
笑死,最坏情况下时间复杂度为O(n*nlogn)
思路:每次找前面最小l,使[l,i]满足条件,dp[i] = dp[l-1]+1;
#include <stdio.h>
#include <string.h>
#include <ctime>
#include <stack>
#include <string>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <map>
#include <queue>
#include <vector>
using namespace std;
#define LL long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lowbit(x) (x&-x)
const int maxn = 1e5+7;
const int INF = 0x3f3f3f3f;
int rmq[maxn][20][2];
int mm[maxn],a[maxn];
int dp[maxn],n,s;
void initRMQ()
{
mm[0] = -1;
for(int i=1; i<=n; i++)
{
mm[i]=((i&(i-1))==0)?mm[i-1]+1:mm[i-1];
rmq[i][0][0] = rmq[i][0][1] = a[i];
}
for(int j=1; j<=mm[n]; j++)
for(int i=1; i+(1<<j)-1<=n; i++)
{
rmq[i][j][0] = max(rmq[i][j-1][0],rmq[i+(1<<(j-1))][j-1][0]);
rmq[i][j][1] = min(rmq[i][j-1][1],rmq[i+(1<<(j-1))][j-1][1]);
}
}
int qMin(int x,int y)
{
int k = mm[y-x+1];
return min(rmq[x][k][1],rmq[y-(1<<k)+1][k][1]);
}
int qMax(int x,int y)
{
int k = mm[y-x+1];
return max(rmq[x][k][0],rmq[y-(1<<k)+1][k][0]);
}
int f(int l,int r)
{
return qMax(l,r)-qMin(l,r);
}
int findLeft(int l,int r,int i)
{
int m,ret = -1;
while(l<=r)
{
m = (l+r)>>1;
if(f(m,i)<=s)
{
ret = m;
r = m-1;
}
else
l = m+1;
}
return ret;
}
int main()
{
int l;
while(scanf("%d%d%d",&n,&s,&l)!=EOF)
{
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
initRMQ();
if(qMax(1,1+l-1)-qMin(1,1+l-1)>s)
{
//puts("this");
puts("-1");
continue;
}
for(int i=1; i<l; i++)
dp[i] = maxn;
dp[l] = 1;
for(int i=l+1; i<=n; i++)
{
int t = findLeft(1,i-l+1,i);
if(t!=-1)
{
while(dp[t-1]>=maxn&&t<=i-l)
t++;
dp[i] = dp[t-1]+1;
}
else
dp[i] = maxn;
}
if(dp[n]<maxn)
printf("%dn",dp[n]);
else
puts("-1");
}
return 0;
}
Alexandra has a paper strip with n numbers on it. Let's call them ai from left to right.
Now Alexandra wants to split it into some pieces (possibly 1). For each piece of strip, it must satisfy:
- Each piece should contain at least l numbers.
- The difference between the maximal and the minimal number on the piece should be at most s.
Please help Alexandra to find the minimal number of pieces meeting the condition above.
The first line contains three space-separated integers n, s, l (1 ≤ n ≤ 105, 0 ≤ s ≤ 109, 1 ≤ l ≤ 105).
The second line contains n integers ai separated by spaces ( - 109 ≤ ai ≤ 109).
Output the minimal number of strip pieces.
If there are no ways to split the strip, output -1.
7 2 2 1 3 1 2 4 1 2
3
7 2 2 1 100 1 100 1 100 1
-1
最后
以上就是无奈老鼠为你收集整理的codeforces-487B Strip(dp+rmq+二分+水数据)的全部内容,希望文章能够帮你解决codeforces-487B Strip(dp+rmq+二分+水数据)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复