概述
1、VGGNet简介
VGGNet是牛津大学计算机视觉组和Google DeepMind公司的研究员一起研发的深度卷积神经网络,VGGNet探索了卷积神经网络的深度与其性能之间的关系,反复使用33的小型卷积核和22的最大池化层来构筑卷积神经网络。到目前为止,VGGNet依然经常被用来提取图像特征。
VGGNet拥有5段卷积,每一段内有2~3个卷积层,同时每段尾部会连接一个最大池层用来缩小图片尺寸。每段内的卷积核数量一样,越靠后的段的卷积核数量越多:64-128-256-512-512。
VGGNet特点:
(1)LRN层作用不大
(2)越深的网络效果越好
(3)11的卷积也是很有效的,但是没有33的卷积好,大一些的卷积核可以学习更大的空间特性。
2、代码如下
#导入库
import time
import math
import datetime
import tensorflow as tf
#函数conv_op,用来创建卷积层并把本层的参数存入参数列表
def conv_op(input_op, name, kh, kw, n_out, dh, dw, p):
n_in = input_op.get_shape()[-1].value
with tf.name_scope(name) as scope:
kernel = tf.get_variable(scope+"w",
shape=[kh, kw, n_in, n_out], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer_conv2d())
conv = tf.nn.conv2d(input_op, kernel, (1, dh, dw, 1),
padding='SAME')
bias_init_val = tf.constant(0.0, shape=[n_out], dtype=tf.float32)
biases = tf.Variable(bias_init_val, trainable=True, name='b')
z = tf.nn.bias_add(conv, biases)
activation = tf.nn.relu(z, name=scope)
p +=[kernel, biases]
return activation
#定义全连接层的创建函数fc_op
def fc_op(input_op, name, n_out, p):
n_in = input_op.get_shape()[-1].value
with tf.name_scope(name) as scope:
kernel = tf.get_variable(scope+"w",
shape=[n_in, n_out],dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer())
biases = tf.Variable(tf.constant(0.1, shape=[n_out],
dtype=tf.float32), name='b')
activation = tf.nn.relu_layer(input_op, kernel, biases, name=scope)
p += [kernel, biases]
return activation
#定义最大池化层的创建函数mpool_op
def mpool_op(input_op, name, kh, kw, dh, dw):
return tf.nn.max_pool(input_op,
ksize=[1, kh, kw, 1],
strides=[1, dh, dw, 1],
padding='SAME',
name=name)
#完成卷积层、池化层、最大连接层的创建
def inference_op(input_op, keep_prob):
p = []
conv1_1 = conv_op(input_op, name="conv1_1", kh=3, kw=3, n_out=64, dh=1,dw=1, p=p)
conv1_2 = conv_op(conv1_1, name="conv1_2", kh=3, kw=3, n_out=64, dh=1, dw=1, p=p)
pool1 = mpool_op(conv1_2, name="pool1",kh=2,kw=2,dw=2,dh=2)
conv2_1 = conv_op(pool1, name="conv2_1", kh=3, kw=3, n_out=128, dh=1, dw=1, p=p)
conv2_2 = conv_op(conv2_1, name="conv2_2", kh=3, kw=3, n_out=128, dh=1, dw=1, p=p)
pool2 = mpool_op(conv2_2, name="pool2", kh=2, kw=2, dw=2, dh=2)
conv3_1 = conv_op(pool2, name="conv3_1", kh=3, kw=3, n_out=256, dh=1, dw=1, p=p)
conv3_2 = conv_op(conv3_1, name="conv3_2", kh=3, kw=3, n_out=256, dh=1, dw=1, p=p)
conv3_3 = conv_op(conv3_2, name="conv3_3", kh=3, kw=3, n_out=256, dh=1, dw=1, p=p)
pool3 = mpool_op(conv3_3, name="pool3", kh=2, kw=2, dw=2, dh=2)
conv4_1 = conv_op(pool3, name="conv4_1", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
conv4_2 = conv_op(conv4_1, name="conv4_2", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
conv4_3 = conv_op(conv4_2, name="conv4_3", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
pool4 = mpool_op(conv4_3, name="pool4", kh=2, kw=2, dw=2, dh=2)
conv5_1 = conv_op(pool4, name="conv5_1", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
conv5_2 = conv_op(conv5_1, name="conv5_2", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
conv5_3 = conv_op(conv5_2, name="conv5_3", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
pool5 = mpool_op(conv5_3, name="pool5", kh=2, kw=2, dw=2, dh=2)
shp = pool5.get_shape()
flattened_shape = shp[1].value * shp[2].value * shp[3].value
resh1 = tf.reshape(pool5, [-1, flattened_shape], name="resh1")
fc6 = fc_op(resh1,name="fc6", n_out=4096, p=p)
fc6_drop = tf.nn.dropout(fc6, keep_prob, name="fc6_drop")
fc7 = fc_op(fc6_drop,name="fc7",n_out=4096,p=p)
fc7_drop = tf.nn.dropout(fc7, keep_prob, name="fc7_drop")
fc8 = fc_op(fc7_drop, name="fc8", n_out=1000, p=p)
softmax = tf.nn.softmax(fc8)
predictions = tf.argmax(softmax, 1)
return predictions, softmax, fc8, p
#评测函数
def time_tensorflow_run(session,target, feed, info_string):
num_steps_burn_in = 10
total_duration = 0.0
total_duration_squared = 0.0
for i in range(num_batches + num_steps_burn_in):
start_time = time.time()
_ = session.run(target, feed_dict=feed)
duration = time.time() - start_time
if i >= num_steps_burn_in:
if not i % 10:
print('%s: step %d, duration = %.3f' %
(datetime.datetime.now(), i-num_steps_burn_in,duration))
total_duration += duration
total_duration_squared += duration * duration
mn = total_duration / num_batches
vr = total_duration_squared / num_batches - mn * mn
sd = math.sqrt(vr)
print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
(datetime.datetime.now(), info_string, num_batches, mn,sd))
#定义主函数
def run_benchmark():
with tf.Graph().as_default():
image_size = 224
images = tf.Variable(tf.random_normal([batch_size,image_size,
image_size, 3],
dtype=tf.float32, stddev=1e-1))
keep_prob = tf.placeholder(tf.float32)
predictions, softmax, fc8, p = inference_op(images, keep_prob)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
time_tensorflow_run(sess, predictions, {keep_prob:1.0}, "Forward")
objective = tf.nn.l2_loss(fc8)
grad = tf.gradients(objective, p)
time_tensorflow_run(sess, grad, {keep_prob:0.5}, "Forward-backward")
batch_size=32
num_batches=100
run_benchmark()
最后
以上就是自觉跳跳糖为你收集整理的TensorFlow实现VGGNet网络模型1、VGGNet简介2、代码如下的全部内容,希望文章能够帮你解决TensorFlow实现VGGNet网络模型1、VGGNet简介2、代码如下所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复