概述
clear all
close all
syms pi000 pi001 pi002 pi003 pi010 pi011 pi012 pi013 pi020 pi021 pi022 pi023 pi100 pi101 pi102 pi103 pi110 pi111 pi112 pi113 pi120 pi121 pi122 pi123 a1 a2 a3 b11 b21 b22 b31 b32 b33
eq1=(a1+a2+a3)*pi000-b11*pi100-b21*pi010-b31*pi001-b22*pi020-b32*pi002-b33*pi003;
eq2=(a1+a2+b31)*pi001-b11*pi101-b21*pi011-b22*pi021;
eq3=(a1+a2+b32)*pi002-b11*pi102-b21*pi012-b22*pi022;
eq4=(a1+a2+b33)*pi003-b11*pi103-b21*pi013-b22*pi023-a3*pi000;
eq5=(a1+a2+a3+b21)*pi010-b11*pi110-b31*pi011-b32*pi012-b33*pi013;
eq6=(a1+b21+b31)*pi011-b11*pi111;
eq7=(a1+b21+b32)*pi012-b11*pi112-a2*pi010;
eq8=(a1+b21+b33)*pi013-b11*pi113-a3*pi010;
eq9=(a1+a2+a3+b22)*pi020-b11*pi120-b31*pi021-b32*pi022-b33*pi023-a2*pi000;
eq10=(a1+b31+b22)*pi021-b11*pi121-a2*pi001;
eq11=(a1+b22+b32)*pi022-b11*pi122-a2*(pi002+pi020);
eq12=(a1+b22+b33)*pi023-b11*pi123-a2*pi003-a3*pi020;
eq13=(a1+a2+a3+b11)*pi100-b21*pi110-b31*pi101-b32*pi102-b22*pi120-b33*pi103-a1*pi000;
eq14=(a1+a2+b11+b31)*pi101-b21*pi111-b22*pi121-a1*pi001;
eq15=(a1+a2+b11+b32)*pi102-b11*pi112-b22*pi122-a1*pi002;
eq16=(a1+a2+b11+b33)*pi103-b21*pi113-b22*pi123-a1*pi003-a3*pi100;
eq17=(a1+a2+a3+b11+b21)*pi110-b31*pi111-b32*pi112-b33*pi113-a1*(pi100+pi010);
eq18=(b11+b21+b31)*pi111-a1*(pi101+pi110+pi011);
eq19=(b11+b21+b32)*pi112-a1*(pi012+pi102)-a2*pi110;
eq20=(b11+b21+b33)*pi113-a1*(pi103+pi013)-a3*pi110;
eq21=(a1+a2+a3+b11+b22)*pi120-b31*pi121-b32*pi122-b33*pi123-a1*pi020-a2*pi100;
eq22=(b11+b31+b22)*pi121-a1*(pi021+pi120)+a2*pi101;
eq23=(b11+b22+b32)*pi122-a1*pi022-a2*(pi102+pi120);
eq24=pi000+pi001+pi002+pi003+pi010+pi011+pi012+pi013+pi020+pi021+pi022+pi023+pi100+pi101+pi102+pi103+pi110+pi111+pi112+pi113+pi120+pi121+pi122+pi123-1;
[pi000,pi001,pi002,pi003,pi010,pi011,pi012,pi013,pi020,pi021,pi022,pi023,pi100,pi101,pi102,pi103,pi110,pi111,pi112,pi113,pi120,pi121,pi122,pi123]=solve(eq1,eq2,eq3,eq4,eq5,eq6,eq7,eq8,eq9,eq10,eq11,eq12,eq13,eq14,eq15,eq16,eq17,eq18,eq19,eq20,eq21,eq22,eq23,eq24,'pi000','pi001','pi002','pi003','pi010','pi011','pi012','pi013','pi020','pi021','pi022','pi023','pi100','pi101','pi102','pi103','pi110','pi111','pi112','pi113','pi120','pi121','pi122','pi123')
最后
以上就是懦弱巨人为你收集整理的matlab多参数求解,用matlab解带参数的多元一次方程组问题的全部内容,希望文章能够帮你解决matlab多参数求解,用matlab解带参数的多元一次方程组问题所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复