我是
靠谱客的博主
精明美女,最近开发中收集的这篇文章主要介绍
Spark SQL与Hive On MapReduce速度比较,觉得挺不错的,现在分享给大家,希望可以做个参考。
概述
我们都知道Spark比Hadoop的MR计算速度更快。到底快多少呢?我一直比较疑惑,会有官网说的那么夸张吗。
今天就拿基于Spark的Spark SQL和基于MR的Hive比较一下,因为Spark SQL也兼容了HiveQL,我们就可以通过运行相同的HiveQL语句,比较直观的看出到底快多少了。
Spark SQL只要在编译的时候引入hive支持,就可以支持Hive表访问,UDF,SerDe,以及HiveQL/HQL--引自《Spark快速大数据分析》
Hive一般在工作站上运行,它把SQL查询转化为一系列在hadoop集群上运行的MR作业--引自《Hadoop权威指南》
用的文件系统都是HDFS,比较的是第二条sql语句
1.运行spark-sql shell
- guo@drguo:/opt/spark-1.6.1-bin-hadoop2.6/bin$ spark-sql
- spark-sql> create external table cn(x bigint, y bigint, z bigint, k bigint)
- > row format delimited fields terminated by ','
- > location '/cn';
- OK
- Time taken: 0.876 seconds
- spark-sql> create table p as select y, z, sum(k) as t
- > from cn where x>=20141228 and x<=20150110 group by y, z;
- Time taken: 20.658 seconds
查看jobs,用了15s,为什么上面显示花了接近21s?我也不清楚,先放下不管。
再看一下它的DAG图
2.运行Hive
- hive> create external table cn(x bigint, y bigint, z bigint, k bigint)
- > row format delimited fields terminated by ','
- > location '/cn';
- OK
- Time taken: 0.752 seconds
- hive> create table p as select y, z, sum(k) as t
- > from cn where x>=20141228 and x<=20150110 group by y, z;
- Query ID = guo_20160515161032_2e035fc2-6214-402a-90dd-7acda7d638bf
- Total jobs = 1
- Launching Job 1 out of 1
- Number of reduce tasks not specified. Estimated from input data size: 1
- In order to change the average load for a reducer (in bytes):
- set hive.exec.reducers.bytes.per.reducer=<number>
- In order to limit the maximum number of reducers:
- set hive.exec.reducers.max=<number>
- In order to set a constant number of reducers:
- set mapreduce.job.reduces=<number>
- Starting Job = job_1463299536204_0001, Tracking URL = http://drguo:8088/proxy/application_1463299536204_0001/
- Kill Command = /opt/Hadoop/hadoop-2.7.2/bin/hadoop job -kill job_1463299536204_0001
- Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
- 2016-05-15 16:10:52,353 Stage-1 map = 0%, reduce = 0%
- 2016-05-15 16:11:03,418 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 8.65 sec
- 2016-05-15 16:11:13,257 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 13.99 sec
- MapReduce Total cumulative CPU time: 13 seconds 990 msec
- Ended Job = job_1463299536204_0001
- Moving data to: hdfs://drguo:9000/user/hive/warehouse/predict
- Table default.predict stats: [numFiles=1, numRows=1486, totalSize=15256, rawDataSize=13770]
- MapReduce Jobs Launched:
- Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 13.99 sec HDFS Read: 16551670 HDFS Write: 15332 SUCCESS
- Total MapReduce CPU Time Spent: 13 seconds 990 msec
- OK
- Time taken: 42.887 seconds
花了接近43s。再去RM看一下,花了36s
结果非常明显
如果按shell里显示花的时间算,21:43
按网页里显示花的时间算,15:36
差不多一倍,据说即将发布的Spark2.0速度更快。
那么问题来了,Spark什么时候会完全取代MR?
最后
以上就是精明美女为你收集整理的Spark SQL与Hive On MapReduce速度比较的全部内容,希望文章能够帮你解决Spark SQL与Hive On MapReduce速度比较所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复