概述
在做svm的时候我们碰到了结构风险最小化的问题,结构风险等于经验风险+vc置信范围,其中的vc置信范围又跟样本的数量和模型的vc维有关,所以我们看一下什么是vc维
首先看一下vc维的定义:对一个指标函数集,如果存在H个样本能够被函数集中的函数按所有可能的2的H次方种形式分开,则称函数集能够把H个样本打散;函数集的VC维就是它能打散的最大样本数目H
例如有个样本,一个函数能够将这h个样本打散,打散指的是样本最后被分类的情况有2^h种可能,则这个函数能够打散的最大样本数就是vc维
如下图所示,一条直线能够将三个点打散成2^3种结果,但是不能将4个点打散成2^4种结果,所以vc维是3
参考
http://blog.csdn.net/mingspy/article/details/8858270
最后
以上就是单薄唇彩为你收集整理的vc维的解释的全部内容,希望文章能够帮你解决vc维的解释所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复