概述
#include "stdafx.h"
// Brief Sample of using OpenCV dnn module in real time with device capture, video and image.
#include <opencv2/dnn.hpp>
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <fstream>
#include <iostream>
#include <algorithm>
#include <cstdlib>
using namespace std;
using namespace cv;
using namespace cv::dnn;
static const char* about =
"This sample uses You only look once (YOLO)-Detector (https://arxiv.org/abs/1612.08242) to detect objects on camera/video/image.n"
"Models can be downloaded here: https://pjreddie.com/darknet/yolo/n"
"Default network is 416x416.n"
"Class names can be downloaded here: https://github.com/pjreddie/darknet/tree/master/datan";
static const char* params =
"{ help |false | print usage }"
"{ cfg |yolov3-voc.cfg | yolov3-voc.cfg}" //模型配置文件
"{ model |yolov3.weights |yolov3.weights}" //模型权重文件
"{ camera_device | 0 | 0}" //摄像头
"{ source | road.avi |road.avi}" //图片路径
"{ save | | path/}" //可设置保存文件路径
"{ fps | 3 | 3 }"
"{ style | box | box }"
"{ min_confidence | 0.24 | 0.24 }" //最小置信阀值
"{ class_names | voc.names| voc.names }"; //分类文件
int main(int argc, char** argv)
{
/*CommandLineParser parser(argc, argv, params);
if (parser.get<bool>("help"))
{
cout << about << endl;
parser.printMessage();
return 0;
}*/
//String modelConfiguration = parser.get<String>("cfg");
//String modelBinary = parser.get<String>("model");
String cfg = "yolov2.cfg";
String model = "yolov2.weights";
dnn::Net net;
//try {
//! [Initialize network]
net = readNetFromDarknet(cfg, model);
//! [Initialize network]
//}
//catch (cv::Exception& e) {
// std::cerr << "Exception: " << e.what() << std::endl;
// if (net.empty())
// {
// cerr << "Can't load network by using the following files: " << endl;
// cerr << "cfg-file: " << modelConfiguration << endl;
// cerr << "weights-file: " << modelBinary << endl;
// cerr << "Models can be downloaded here:" << endl;
// cerr << "https://pjreddie.com/darknet/yolo/" << endl;
// exit(-1);
// }
//}
/*VideoCapture cap;
VideoWriter writer;*/
int codec = CV_FOURCC('M', 'J', 'P', 'G');
//double fps = parser.get<float>("fps");
double fps = 3;
/*if (parser.get<String>("source").empty())
{
int cameraDevice = parser.get<int>("camera_device");
cap = VideoCapture(cameraDevice);
if (!cap.isOpened())
{
cout << "Couldn't find camera: " << cameraDevice << endl;
return -1;
}
}
else
{
cap.open(parser.get<String>("source"));
if (!cap.isOpened())
{
cout << "Couldn't open image or video: " << parser.get<String>("video") << endl;
return -1;
}
}
if (!parser.get<String>("save").empty())
{
writer.open(parser.get<String>("save"), codec, fps, Size((int)cap.get(CAP_PROP_FRAME_WIDTH), (int)cap.get(CAP_PROP_FRAME_HEIGHT)), 1);
}*/
vector<String> classNamesVec;
String asd = "coco.names";
//ifstream classNamesFile(parser.get<String>("class_names").c_str());
ifstream classNamesFile(asd.c_str());
if (classNamesFile.is_open())
{
string className = "";
while (std::getline(classNamesFile, className))
classNamesVec.push_back(className);
}
// String object_roi_style = parser.get<String>("style");
String object_roi_style = "box";
VideoCapture cap("road.avi");
for (;;)
{
Mat frame;
cap >> frame; // get a new frame from camera/video or read image
if (frame.empty())
{
waitKey();
break;
}
if (frame.channels() == 4)
cvtColor(frame, frame, COLOR_BGRA2BGR);
//! [Prepare blob]
Mat inputBlob = blobFromImage(frame, 1 / 255.F, Size(416, 416), Scalar(), true, false); //Convert Mat to batch of images
//! [Prepare blob]
//! [Set input blob]
net.setInput(inputBlob, "data"); //set the network input
//! [Set input blob]
//! [Make forward pass]
Mat detectionMat = net.forward("detection_out"); //compute output
//! [Make forward pass]
vector<double> layersTimings;
double tick_freq = getTickFrequency();
double time_ms = net.getPerfProfile(layersTimings) / tick_freq * 1000;
putText(frame, format("FPS: %.2f ; time: %.2f ms", 1000.f / time_ms, time_ms),
Point(20, 20), 0, 0.5, Scalar(0, 0, 255));
//float confidenceThreshold = parser.get<float>("min_confidence");
float confidenceThreshold = 0.24;
for (int i = 0; i < detectionMat.rows; i++)
{
const int probability_index = 5;
const int probability_size = detectionMat.cols - probability_index;
float *prob_array_ptr = &detectionMat.at<float>(i, probability_index);
size_t objectClass = max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr;
float confidence = detectionMat.at<float>(i, (int)objectClass + probability_index);
if (confidence > confidenceThreshold)
{
float x_center = detectionMat.at<float>(i, 0) * frame.cols;
float y_center = detectionMat.at<float>(i, 1) * frame.rows;
float width = detectionMat.at<float>(i, 2) * frame.cols;
float height = detectionMat.at<float>(i, 3) * frame.rows;
Point p1(cvRound(x_center - width / 2), cvRound(y_center - height / 2));
Point p2(cvRound(x_center + width / 2), cvRound(y_center + height / 2));
Rect object(p1, p2);
Scalar object_roi_color(0, 255, 0);
if (object_roi_style == "box")
{
rectangle(frame, object, object_roi_color);
}
else
{
Point p_center(cvRound(x_center), cvRound(y_center));
line(frame, object.tl(), p_center, object_roi_color, 1);
}
String className = objectClass < classNamesVec.size() ? classNamesVec[objectClass] : cv::format("unknown(%d)", objectClass);
String label = format("%s: %.2f", className.c_str(), confidence);
int baseLine = 0;
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
rectangle(frame, Rect(p1, Size(labelSize.width, labelSize.height + baseLine)),
object_roi_color, CV_FILLED);
putText(frame, label, p1 + Point(0, labelSize.height),
FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 0));
}
}
/*if (writer.isOpened())
{
writer.write(frame);
}*/
imshow("YOLO: Detections", frame);
if (waitKey(1) >= 0) break;
}
return 0;
} // main
最后
以上就是刻苦钢笔为你收集整理的opencv3 dnn模块 调用darknet的全部内容,希望文章能够帮你解决opencv3 dnn模块 调用darknet所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复