scale()进行数组的标准化,先减去数据集的均值(中心化)再除以数据集的标准差(标准化)。
为了消除量纲对数据结构的影响。
输入:
复制代码
1
2x<-read.table("C:\Users\Administrator\Desktop\R\data.exam5.2.1.txt",header = TRUE) std1.x<-scale(x[2:9]);std1.x
执行结果如下:
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232> std1.x<-scale(x[2:9]);std1.x x1 x2 x3 [1,] 0.13774798 0.103406512 0.19521746 [2,] 1.72088817 2.344698037 1.35836580 [3,] 0.89085539 0.018444199 2.11317155 [4,] -0.87828274 -0.211025441 -0.09165809 [5,] -1.10796789 0.211025441 0.23704337 [6,] -0.83580771 1.792466805 0.01676315 [7,] 0.05553747 -0.012494458 0.48063857 [8,] -0.81424291 0.508417334 0.54860018 [9,] -1.06819604 0.005592757 -0.67642761 [10,] 3.16508751 1.474465006 2.08959214 [11,] 0.50222831 -0.143959952 0.36186002 [12,] 1.67061878 1.836923275 1.01410633 [13,] -0.15760133 -0.541688290 -0.38673134 [14,] 0.94771907 -0.378665365 1.42443224 [15,] -0.39006239 -0.500658871 -0.92213834 [16,] -0.40457226 1.037944352 0.39487120 [17,] -0.97817905 0.156383013 -0.62847545 [18,] -0.07080875 0.125396758 -0.35706976 [19,] -0.32791357 -0.012780045 -0.30144878 [20,] 1.86953864 -0.979113305 2.23419786 [21,] -0.14098225 -1.730589490 -0.59475909 [22,] 0.03912446 -2.700825781 -0.52432936 [23,] 0.19381162 0.718133832 0.13426356 [24,] 0.07969636 -0.335732029 -1.09177792 [25,] -0.47509729 -0.523458281 -0.96669683 [26,] 0.05810731 -0.764541818 -1.16758464 [27,] 0.39046468 -0.667204042 -1.36468211 [28,] -0.54633751 -0.523505879 -0.47033911 [29,] -0.83637744 -0.382615994 -0.74795918 [30,] -0.86179700 -0.579433452 -1.30483006 [31,] -0.91356950 -0.122826469 -0.12035006 [32,] -0.91363011 0.777821642 -0.88586571 x4 x5 x6 [1,] 0.21387591 0.11507170 0.1925790 [2,] 2.52501220 2.99460313 1.7555223 [3,] 1.18114978 2.36500509 0.1161781 [4,] -0.12152612 0.76562569 -0.3657415 [5,] -0.54198196 -0.16984211 -0.3376082 [6,] -0.03037963 0.21205951 -0.1833739 [7,] -0.77630643 0.98617134 -0.3289654 [8,] -0.97084570 0.86866315 -0.5856415 [9,] -1.28571540 0.26248930 -0.7914106 [10,] 2.39316660 0.87984288 3.0836620 [11,] 0.85671457 0.06802970 0.1050407 [12,] 0.60514782 0.88928032 1.9887165 [13,] -0.61545968 -0.58499254 -0.5574760 [14,] 0.47951676 -0.83680272 0.5941224 [15,] 0.12614132 -1.40062909 -0.8124301 [16,] 0.57474535 0.16100056 0.1543061 [17,] -0.10696461 -0.23600096 -0.6106686 [18,] -0.10075008 -0.72592494 -0.5387420 [19,] 0.22228381 -0.03282988 -0.4037568 [20,] 1.74545380 0.37365747 2.7816636 [21,] -0.46101024 -0.64485977 -0.4906997 [22,] -0.28456623 -0.83017232 0.2641677 [23,] 0.85342453 0.35908994 -0.1914695 [24,] -0.02849089 -0.79145463 -0.2620925 [25,] -0.62837616 -1.55254763 -0.5515854 [26,] -1.74297103 -0.21107645 -0.3267926 [27,] -1.79981573 -1.94800044 -0.5977929 [28,] -0.32666665 0.01484128 -0.5971009 [29,] -0.37492068 -0.53751497 -0.6056149 [30,] -0.49951598 -0.30041752 -0.7282555 [31,] -0.52309465 -0.14196537 -0.6095259 [32,] -0.55727459 -0.37039974 -0.5592142 x7 x8 [1,] 0.196917512 0.05270804 [2,] 2.379697737 2.51243056 [3,] 0.839811267 0.94523785 [4,] -0.701399606 -0.71850377 [5,] -0.372389151 -0.89618410 [6,] 0.022944879 0.98340247 [7,] -0.374686161 0.41042765 [8,] -0.488895149 0.36097372 [9,] -0.612105933 -0.34351319 [10,] 2.937829757 3.47404424 [11,] 0.962794419 0.21842506 [12,] 1.912763219 0.97792631 [13,] -0.132465431 -0.35505525 [14,] 0.398019694 0.20671450 [15,] -0.539325898 -0.47890071 [16,] -0.088615305 -0.21739302 [17,] -0.615541101 -0.43180574 [18,] -0.235313533 -0.91514003 [19,] 0.106030417 -0.30012516 [20,] 1.574502643 0.86478043 [21,] -0.380687358 -0.62355558 [22,] -0.819830126 -1.18448285 [23,] 0.006927891 -0.73661722 [24,] -0.418412124 -0.50653426 [25,] -0.409824204 -0.78548142 [26,] -1.093650262 -1.49300128 [27,] -1.640980127 -0.13297591 [28,] -0.006750700 -0.15673401 [29,] -0.362849317 0.01858735 [30,] -0.579699468 -0.16903431 [31,] -0.766998898 -0.41512451 [32,] -0.697819582 -0.16549587 attr(,"scaled:center") x1 x2 x3 x4 3514.3941 1020.2750 937.9866 566.6962 x5 x6 x7 x8 675.3134 1237.7553 1234.0022 351.4438 attr(,"scaled:scale") x1 x2 x3 x4 x5 824.9554 210.0932 226.8928 164.1314 206.6239 x6 x7 x8 621.3277 483.2369 118.6963
执行结果分析:
32组数据,8个变量x1,...,x8
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207x1 x2 x3 [1,] 0.13774798 0.103406512 0.19521746 [2,] 1.72088817 2.344698037 1.35836580 [3,] 0.89085539 0.018444199 2.11317155 [4,] -0.87828274 -0.211025441 -0.09165809 [5,] -1.10796789 0.211025441 0.23704337 [6,] -0.83580771 1.792466805 0.01676315 [7,] 0.05553747 -0.012494458 0.48063857 [8,] -0.81424291 0.508417334 0.54860018 [9,] -1.06819604 0.005592757 -0.67642761 [10,] 3.16508751 1.474465006 2.08959214 [11,] 0.50222831 -0.143959952 0.36186002 [12,] 1.67061878 1.836923275 1.01410633 [13,] -0.15760133 -0.541688290 -0.38673134 [14,] 0.94771907 -0.378665365 1.42443224 [15,] -0.39006239 -0.500658871 -0.92213834 [16,] -0.40457226 1.037944352 0.39487120 [17,] -0.97817905 0.156383013 -0.62847545 [18,] -0.07080875 0.125396758 -0.35706976 [19,] -0.32791357 -0.012780045 -0.30144878 [20,] 1.86953864 -0.979113305 2.23419786 [21,] -0.14098225 -1.730589490 -0.59475909 [22,] 0.03912446 -2.700825781 -0.52432936 [23,] 0.19381162 0.718133832 0.13426356 [24,] 0.07969636 -0.335732029 -1.09177792 [25,] -0.47509729 -0.523458281 -0.96669683 [26,] 0.05810731 -0.764541818 -1.16758464 [27,] 0.39046468 -0.667204042 -1.36468211 [28,] -0.54633751 -0.523505879 -0.47033911 [29,] -0.83637744 -0.382615994 -0.74795918 [30,] -0.86179700 -0.579433452 -1.30483006 [31,] -0.91356950 -0.122826469 -0.12035006 [32,] -0.91363011 0.777821642 -0.88586571 x4 x5 x6 [1,] 0.21387591 0.11507170 0.1925790 [2,] 2.52501220 2.99460313 1.7555223 [3,] 1.18114978 2.36500509 0.1161781 [4,] -0.12152612 0.76562569 -0.3657415 [5,] -0.54198196 -0.16984211 -0.3376082 [6,] -0.03037963 0.21205951 -0.1833739 [7,] -0.77630643 0.98617134 -0.3289654 [8,] -0.97084570 0.86866315 -0.5856415 [9,] -1.28571540 0.26248930 -0.7914106 [10,] 2.39316660 0.87984288 3.0836620 [11,] 0.85671457 0.06802970 0.1050407 [12,] 0.60514782 0.88928032 1.9887165 [13,] -0.61545968 -0.58499254 -0.5574760 [14,] 0.47951676 -0.83680272 0.5941224 [15,] 0.12614132 -1.40062909 -0.8124301 [16,] 0.57474535 0.16100056 0.1543061 [17,] -0.10696461 -0.23600096 -0.6106686 [18,] -0.10075008 -0.72592494 -0.5387420 [19,] 0.22228381 -0.03282988 -0.4037568 [20,] 1.74545380 0.37365747 2.7816636 [21,] -0.46101024 -0.64485977 -0.4906997 [22,] -0.28456623 -0.83017232 0.2641677 [23,] 0.85342453 0.35908994 -0.1914695 [24,] -0.02849089 -0.79145463 -0.2620925 [25,] -0.62837616 -1.55254763 -0.5515854 [26,] -1.74297103 -0.21107645 -0.3267926 [27,] -1.79981573 -1.94800044 -0.5977929 [28,] -0.32666665 0.01484128 -0.5971009 [29,] -0.37492068 -0.53751497 -0.6056149 [30,] -0.49951598 -0.30041752 -0.7282555 [31,] -0.52309465 -0.14196537 -0.6095259 [32,] -0.55727459 -0.37039974 -0.5592142 x7 x8 [1,] 0.196917512 0.05270804 [2,] 2.379697737 2.51243056 [3,] 0.839811267 0.94523785 [4,] -0.701399606 -0.71850377 [5,] -0.372389151 -0.89618410 [6,] 0.022944879 0.98340247 [7,] -0.374686161 0.41042765 [8,] -0.488895149 0.36097372 [9,] -0.612105933 -0.34351319 [10,] 2.937829757 3.47404424 [11,] 0.962794419 0.21842506 [12,] 1.912763219 0.97792631 [13,] -0.132465431 -0.35505525 [14,] 0.398019694 0.20671450 [15,] -0.539325898 -0.47890071 [16,] -0.088615305 -0.21739302 [17,] -0.615541101 -0.43180574 [18,] -0.235313533 -0.91514003 [19,] 0.106030417 -0.30012516 [20,] 1.574502643 0.86478043 [21,] -0.380687358 -0.62355558 [22,] -0.819830126 -1.18448285 [23,] 0.006927891 -0.73661722 [24,] -0.418412124 -0.50653426 [25,] -0.409824204 -0.78548142 [26,] -1.093650262 -1.49300128 [27,] -1.640980127 -0.13297591 [28,] -0.006750700 -0.15673401 [29,] -0.362849317 0.01858735 [30,] -0.579699468 -0.16903431 [31,] -0.766998898 -0.41512451 [32,] -0.697819582 -0.16549587
以上是数据标准化的结果。
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14attr(,"scaled:center") x1 x2 x3 x4 3514.3941 1020.2750 937.9866 566.6962 x5 x6 x7 x8 675.3134 1237.7553 1234.0022 351.4438
数据中心化,数据为每个数据集的平均值。
复制代码
1
2
3
4
5
6
7
8
9
10
11attr(,"scaled:scale") x1 x2 x3 x4 x5 824.9554 210.0932 226.8928 164.1314 206.6239 x6 x7 x8 621.3277 483.2369 118.6963
数据标准化,数据为数据集的标准差。
最后
以上就是怡然河马最近收集整理的关于R语言的scale函数的全部内容,更多相关R语言内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复