我是靠谱客的博主 无聊香菇,最近开发中收集的这篇文章主要介绍Keras: class weights (class_weight) for one-hot encoding问题:回答1:回答2:回答3:回答4:,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

问题:

I'd like to use class_weight argument in keras model.fit to handle the imbalanced training data. By looking at some documents, I understood we can pass a dictionary like this:

class_weight = {0 : 1,
1: 1,
2: 5}

(In this example, class-2 will get higher penalty in the loss function.)

The problem is that my network's output has one-hot encoding i.e. class-0 = (1, 0, 0), class-1 = (0, 1, 0), and class-3 = (0, 0, 1).

How can we use the class_weight for one-hot encoded output?

By looking at some codes in Keras, it looks like _feed_output_names contain a list of output classes, but in my case, model.output_names/model._feed_output_names returns ['dense_1']

Related: How to set class weights for imbalanced classes in Keras?

回答1:

A little bit of a convoluted answer, but the best I've found so far. This assumes your data is one-hot encoded, multi-class, and working only on the labels DataFrame df_y:

import pandas as pd
import numpy as np
# Create a pd.series that represents the categorical class of each one-hot encoded row
y_classes = df_y.idxmax(1, skipna=False)
from sklearn.preprocessing import LabelEncoder
# Instantiate the label encoder
le = LabelEncoder()
# Fit the label encoder to our label series
le.fit(list(y_classes))
# Create integer based labels Series
y_integers = le.transform(list(y_classes))
# Create dict of labels : integer representation
labels_and_integers = dict(zip(y_classes, y_integers))
from sklearn.utils.class_weight import compute_class_weight, compute_sample_weight
class_weights = compute_class_weight('balanced', np.unique(y_integers), y_integers)
sample_weights = compute_sample_weight('balanced', y_integers)
class_weights_dict = dict(zip(le.transform(list(le.classes_)), class_weights))

This results in a sample_weights vector computed to balance an imbalanced dataset which can be passed to the Keras sample_weight property, and a class_weights_dict that can be fed to the Keras class_weight property in the .fit method. You don't really want to use both, just choose one. I'm using class_weight right now because it's complicated to get sample_weight working with fit_generator.


 

回答2:

I guess we can use sample_weights instead. Inside Keras, actually, class_weights are converted to sample_weights.

sample_weight: optional array of the same length as x, containing weights to apply to the model's loss for each sample. In the case of temporal data, you can pass a 2D array with shape (samples, sequence_length), to apply a different weight to every timestep of every sample. In this case you should make sure to specify sample_weight_mode="temporal" in compile().

https://github.com/fchollet/keras/blob/d89afdfd82e6e27b850d910890f4a4059ddea331/keras/engine/training.py#L1392


 

回答3:

in _standardize_weights, keras does:

if y.shape[1] > 1:
y_classes = y.argmax(axis=1)

so basically, if you choose to use one-hot encoding, the classes are the column index.

You may also ask yourself how you can map the column index to the original classes of your data. Well, if you use the LabelEncoder class of scikit learn to perform one-hot encoding, the column index maps the order of the unique labels computed by the .fit function. The doc says

Extract an ordered array of unique labels

Example:

from sklearn.preprocessing import LabelBinarizer
y=[4,1,2,8]
l=LabelBinarizer()
y_transformed=l.fit_transorm(y)
y_transormed
> array([[0, 0, 1, 0],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1]])
l.classes_
> array([1, 2, 4, 8])

As a conclusion, the keys of the class_weights dictionary should reflect the order in the classes_ attribute of the encoder.


 

回答4:

Here's a solution that's a bit shorter and faster. If your one-hot encoded y is a np.array:

import numpy as np
from sklearn.utils.class_weight import compute_class_weight
y_integers = np.argmax(y, axis=1)
class_weights = compute_class_weight('balanced', np.unique(y_integers), y_integers)
d_class_weights = dict(enumerate(class_weights))

d_class_weights can then be passed to class_weight in .fit.


 

转载请标明出处:Keras: class weights (class_weight) for one-hot encoding

文章来源: Keras: class weights (class_weight) for one-hot encoding

最后

以上就是无聊香菇为你收集整理的Keras: class weights (class_weight) for one-hot encoding问题:回答1:回答2:回答3:回答4:的全部内容,希望文章能够帮你解决Keras: class weights (class_weight) for one-hot encoding问题:回答1:回答2:回答3:回答4:所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(70)

评论列表共有 0 条评论

立即
投稿
返回
顶部