不得不说,tensorflow2.0比1.x好用
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103import tensorflow as tf from tensorflow import keras from tensorflow.keras import datasets import os #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # x: [60k, 28, 28], [10, 28, 28] # y: [60k], [10k] # 加载数据 (x, y), (x_test, y_test) = datasets.mnist.load_data() # x: [0~255] => [0~1.] x = tf.convert_to_tensor(x, dtype=tf.float32) / 255. y = tf.convert_to_tensor(y, dtype=tf.int32) x_test = tf.convert_to_tensor(x_test, dtype=tf.float32) / 255. y_test = tf.convert_to_tensor(y_test, dtype=tf.int32) print(x.shape, y.shape, x.dtype, y.dtype) print(tf.reduce_min(x), tf.reduce_max(x)) print(tf.reduce_min(y), tf.reduce_max(y)) train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128) test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(128) train_iter = iter(train_db) sample = next(train_iter) #print('batch:', sample[0].shape, sample[1].shape) # [b, 784] => [b, 256] => [b, 128] => [b, 10] # [dim_in, dim_out], [dim_out] w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1)) b1 = tf.Variable(tf.zeros([256])) w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1)) b2 = tf.Variable(tf.zeros([128])) w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1)) b3 = tf.Variable(tf.zeros([10])) lr = 1e-3 with tf.device("cpu"): for epoch in range(10): # iterate db for 10 for step, (x, y) in enumerate(train_db): # for every batch # x:[128, 28, 28] # y: [128] # [b, 28, 28] => [b, 28*28] x = tf.reshape(x, [-1, 28 * 28]) # -1:根据剩余维度计算 with tf.GradientTape() as tape: # tf.Variable计算梯度 # x: [b, 28*28] # h1 = x@w1 + b1 # [b, 784]@[784, 256] + [256] => [b, 256] + [256] => [b, 256] + [b, 256] h1 = x @ w1 + tf.broadcast_to(b1, [x.shape[0], 256]) h1 = tf.nn.relu(h1) # [b, 256] => [b, 128] h2 = h1 @ w2 + b2 h2 = tf.nn.relu(h2) # [b, 128] => [b, 10] out = h2 @ w3 + b3 # compute loss # out: [b, 10] # y: [b] => [b, 10] y_onehot = tf.one_hot(y, depth=10) # mse = mean(sum(y-out)^2) # [b, 10] loss = tf.square(y_onehot - out) # mean: scalar loss = tf.reduce_mean(loss) # compute gradients grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3]) # print(grads) # w1 = w1 - lr * w1_grad w1.assign_sub(lr * grads[0]) b1.assign_sub(lr * grads[1]) w2.assign_sub(lr * grads[2]) b2.assign_sub(lr * grads[3]) w3.assign_sub(lr * grads[4]) b3.assign_sub(lr * grads[5]) # if step % 100 == 0: # print(epoch, step, 'loss:', float(loss)) # test/evluation # [w1, b1, w2, b2, w3, b3] total_correct, total_num = 0, 0 for step, (x, y) in enumerate(test_db): # [b, 28, 28] => [b, 28*28] x = tf.reshape(x, [-1, 28 * 28]) # [b, 784] => [b, 256] => [b, 128] => [b, 10] h1 = tf.nn.relu(x @ w1 + b1) h2 = tf.nn.relu(h1 @ w2 + b2) out = h2 @ w3 + b3 # out: [b, 10] ~ R # prob: [b, 10] ~ [0, 1] prob = tf.nn.softmax(out, axis=1) # [b, 10] => [b] # int64!!! pred = tf.argmax(prob, axis=1) pred = tf.cast(pred, dtype=tf.int32) # y: [b] # [b], int32 # print(pred.dtype, y.dtype) # 0=预测正确;1=预测错误 correct = tf.cast(tf.equal(pred, y), dtype=tf.int32) correct = tf.reduce_sum(correct) total_correct += int(correct) total_num += x.shape[0] acc = total_correct / total_num print('test acc:', acc)
优化
代码使用高阶api,然后加深网络层数,你会发现,第一轮就达到了95%的准确率,这是惊人的,上面的那个浅层网络,训练好几轮只有65%左右的准确率。
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82import tensorflow as tf from tensorflow import keras from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' def preprocess(x, y): x = tf.cast(x, dtype=tf.float32) / 255. y = tf.cast(y, dtype=tf.int32) return x, y (x, y), (x_test, y_test) = datasets.mnist.load_data() print(x.shape, y.shape) batchsz = 128 # 让每一个x都对应一个y db = tf.data.Dataset.from_tensor_slices((x, y)) # 混合顺序 db = db.map(preprocess).shuffle(10000).batch(batchsz) db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test)) # 指定函数形成映射关系 db_test = db_test.map(preprocess).batch(batchsz) db_iter = iter(db) sample = next(db_iter) print('batch:', sample[0].shape, sample[1].shape) model = Sequential([ layers.Dense(256, activation=tf.nn.relu), # [b, 784] => [b, 256] layers.Dense(128, activation=tf.nn.relu), # [b, 256] => [b, 128] layers.Dense(64, activation=tf.nn.relu), # [b, 128] => [b, 64] layers.Dense(32, activation=tf.nn.relu), # [b, 64] => [b, 32] layers.Dense(10) # [b, 32] => [b, 10], 330 = 32*10 + 10 ]) model.build(input_shape=[None, 28 * 28]) model.summary() # w = w - lr*grad optimizer = optimizers.Adam(lr=1e-3) def main(): for epoch in range(30): for step, (x, y) in enumerate(db): # x: [b, 28, 28] => [b, 784] # y: [b] x = tf.reshape(x, [-1, 28 * 28]) with tf.GradientTape() as tape: # [b, 784] => [b, 10] logits = model(x) y_onehot = tf.one_hot(y, depth=10) # [b] loss_mse = tf.reduce_mean(tf.losses.MSE(y_onehot, logits)) loss_ce = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True) loss_ce = tf.reduce_mean(loss_ce) grads = tape.gradient(loss_ce, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) if step % 100 == 0: print(epoch, step, 'loss:', float(loss_ce), float(loss_mse)) # test total_correct = 0 total_num = 0 for x, y in db_test: # x: [b, 28, 28] => [b, 784] # y: [b] x = tf.reshape(x, [-1, 28 * 28]) # [b, 10] logits = model(x) # logits => prob, [b, 10] prob = tf.nn.softmax(logits, axis=1) # [b, 10] => [b], int64 pred = tf.argmax(prob, axis=1) pred = tf.cast(pred, dtype=tf.int32) # pred:[b] # y: [b] # correct: [b], True: equal, False: not equal correct = tf.equal(pred, y) correct = tf.reduce_sum(tf.cast(correct, dtype=tf.int32)) total_correct += int(correct) total_num += x.shape[0] acc = total_correct / total_num print(epoch, 'test acc:', acc) if __name__ == '__main__': main()
最后
以上就是友好咖啡豆最近收集整理的关于tensorflow2.0之手写数字识别优化的全部内容,更多相关tensorflow2内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复