概述
I have a pandas DataFrame object named xiv which has a column of int64 Volume measurements.
In[]: xiv['Volume'].head(5)
Out[]:
0 252000
1 484000
2 62000
3 168000
4 232000
Name: Volume, dtype: int64
I have read other posts (like this and this) that suggest the following solutions. But when I use either approach, it doesn't appear to change the dtype of the underlying data:
In[]: xiv['Volume'] = pd.to_numeric(xiv['Volume'])
In[]: xiv['Volume'].dtypes
Out[]:
dtype('int64')
Or...
In[]: xiv['Volume'] = pd.to_numeric(xiv['Volume'])
Out[]: ###omitted for brevity###
In[]: xiv['Volume'].dtypes
Out[]:
dtype('int64')
In[]: xiv['Volume'] = xiv['Volume'].apply(pd.to_numeric)
In[]: xiv['Volume'].dtypes
Out[]:
dtype('int64')
I've also tried making a separate pandas Series and using the methods listed above on that Series and reassigning to the x['Volume'] obect, which is a pandas.core.series.Series object.
I have, however, found a solution to this problem using the numpy package's float64 type - this works but I don't know why it's different.
In[]: xiv['Volume'] = xiv['Volume'].astype(np.float64)
In[]: xiv['Volume'].dtypes
Out[]:
dtype('float64')
Can someone explain how to accomplish with the pandas library what the numpy library seems to do easily with its float64 class; that is, convert the column in the xiv DataFrame to a float64 in place.
解决方案
If you already have numeric dtypes (int8|16|32|64,float64,boolean) you can convert it to another "numeric" dtype using Pandas .astype() method.
Demo:
In [90]: df = pd.DataFrame(np.random.randint(10**5,10**7,(5,3)),columns=list('abc'), dtype=np.int64)
In [91]: df
Out[91]:
a b c
0 9059440 9590567 2076918
1 5861102 4566089 1947323
2 6636568 162770 2487991
3 6794572 5236903 5628779
4 470121 4044395 4546794
In [92]: df.dtypes
Out[92]:
a int64
b int64
c int64
dtype: object
In [93]: df['a'] = df['a'].astype(float)
In [94]: df.dtypes
Out[94]:
a float64
b int64
c int64
dtype: object
It won't work for object (string) dtypes, that can't be converted to numbers:
In [95]: df.loc[1, 'b'] = 'XXXXXX'
In [96]: df
Out[96]:
a b c
0 9059440.0 9590567 2076918
1 5861102.0 XXXXXX 1947323
2 6636568.0 162770 2487991
3 6794572.0 5236903 5628779
4 470121.0 4044395 4546794
In [97]: df.dtypes
Out[97]:
a float64
b object
c int64
dtype: object
In [98]: df['b'].astype(float)
...
skipped
...
ValueError: could not convert string to float: 'XXXXXX'
So here we want to use pd.to_numeric() method:
In [99]: df['b'] = pd.to_numeric(df['b'], errors='coerce')
In [100]: df
Out[100]:
a b c
0 9059440.0 9590567.0 2076918
1 5861102.0 NaN 1947323
2 6636568.0 162770.0 2487991
3 6794572.0 5236903.0 5628779
4 470121.0 4044395.0 4546794
In [101]: df.dtypes
Out[101]:
a float64
b float64
c int64
dtype: object
最后
以上就是谦让纸鹤为你收集整理的python中pd是什么意思,什么时候在python中应用(pd.to_numeric)和何时astype(np.float64)?...的全部内容,希望文章能够帮你解决python中pd是什么意思,什么时候在python中应用(pd.to_numeric)和何时astype(np.float64)?...所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复