我是靠谱客的博主 细腻白开水,这篇文章主要介绍Python-Pandas(1)数据读取与显示,数据样本行列选取,现在分享给大家,希望可以做个参考。

复制代码
1
2
3
4
import pandas food_info = pandas.read_csv("food_info.csv") #print(type(food_info)) print food_info.dtypes

这里写图片描述

复制代码
1
2
3
4
5
#first_rows = food_info.head() #print first_rows #print(food_info.head(3)) #print food_info.columns #print food_info.shape

这里写图片描述

复制代码
1
2
3
4
5
6
7
8
#pandas uses zero-indexing #Series object representing the row at index 0. #print food_info.loc[0] # Series object representing the seventh row. #food_info.loc[6] # Will throw an error: "KeyError: 'the label [8620] is not in the [index]'" #food_info.loc[8620] #The object dtype is equivalent to a string in Python
复制代码
1
2
3
4
5
6
#object - For string values #int - For integer values #float - For float values #datetime - For time values #bool - For Boolean values #print(food_info.dtypes)
复制代码
1
2
3
4
5
6
7
8
# Returns a DataFrame containing the rows at indexes 3, 4, 5, and 6. #food_info.loc[3:6] # Returns a DataFrame containing the rows at indexes 2, 5, and 10. Either of the following approaches will work. # Method 1 #two_five_ten = [2,5,10] #food_info.loc[two_five_ten] # Method 2 #food_info.loc[[2,5,10]]

这里写图片描述

复制代码
1
2
3
4
5
6
# Series object representing the "NDB_No" column. #ndb_col = food_info["NDB_No"] #print ndb_col # Alternatively, you can access a column by passing in a string variable. #col_name = "NDB_No" #ndb_col = food_info[col_name]
复制代码
1
2
3
4
5
6
#columns = ["Zinc_(mg)", "Copper_(mg)"] #zinc_copper = food_info[columns] #print zinc_copper #print zinc_copper # Skipping the assignment. #zinc_copper = food_info[["Zinc_(mg)", "Copper_(mg)"]]
复制代码
1
2
3
4
5
6
7
8
9
10
#print(food_info.columns) #print(food_info.head(2)) col_names = food_info.columns.tolist() #print col_names gram_columns = [] for c in col_names: if c.endswith("(g)"): gram_columns.append(c) gram_df = food_info[gram_columns] print(gram_df.head(3))

这里写图片描述

最后

以上就是细腻白开水最近收集整理的关于Python-Pandas(1)数据读取与显示,数据样本行列选取的全部内容,更多相关Python-Pandas(1)数据读取与显示内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(76)

评论列表共有 0 条评论

立即
投稿
返回
顶部