我是靠谱客的博主 文静睫毛膏,这篇文章主要介绍批量分割mask转json,现在分享给大家,希望可以做个参考。

代码

import os
import cv2
import sys
import PIL
import copy
import json
import yaml
import base64
import numpy as np
import skimage.io as io
from glob import glob
try:
from labelme import __version__ as labelme_version
except:
labelme_version = '4.2.9'
sys.path.append('..')
currentCV_version = cv2.__version__
def rm(filepath):
p = open(filepath, 'r+')
lines = p.readlines()
d = ""
for line in lines:
c = line.replace('"group_id": "null",', '"group_id": null,')
d += c
p.seek(0)
p.truncate()
p.write(d)
p.close()
def imgEncode(img_or_path):
if isinstance(img_or_path, np.ndarray):
"""
copy from labelme image.py
"""
img_pil = PIL.Image.fromarray(img_or_path)
f = io.BytesIO()
img_pil.save(f, format='PNG')
img_bin = f.getvalue()
if hasattr(base64, 'encodebytes'):
img_b64 = base64.encodebytes(img_bin)
else:
img_b64 = base64.encodestring(img_bin)
return img_b64
else:
if isinstance(img_or_path, str):
i = open(img_or_path, 'rb')
elif isinstance(img_or_path, io.BufferedReader):
i = img_or_path
else:
raise TypeError('Input type error!')
base64_data = base64.b64encode(i.read())
return base64_data.decode()
def rs(st: str):
s = st.replace('n', '').strip()
return s
def readYmal(filepath, labeledImg=None):
if os.path.exists(filepath):
if filepath.endswith('.yaml'):
f = open(filepath)
y = yaml.load(f, Loader=yaml.FullLoader)
f.close()
# print(y)
tmp = y['label_names']
# print(tmp["tag1"])
objs = zip(tmp.keys(), tmp.values())
return sorted(objs)
elif filepath.endswith('.txt'):
f = open(filepath, 'r', encoding='utf-8')
classList = f.readlines()
f.close()
l3 = [rs(i) for i in classList]
l = list(range(1, len(classList)+1))
objs = zip(l3, l)
return sorted(objs)
elif labeledImg is not None and filepath == "":
"""
should make sure your label is correct!!!
"""
labeledImg = np.array(labeledImg, dtype=np.uint8)
labeledImg[labeledImg > 0] = 255
labeledImg[labeledImg != 255] = 0
# print(labeledImg)
_, labels, stats, centroids = cv2.connectedComponentsWithStats(
labeledImg)
labels = np.max(labels) + 1
labels = [x for x in range(1, labels)]
classes = []
for i in range(0, len(labels)):
classes.append("class{}".format(i))
return zip(classes, labels)
else:
raise FileExistsError('file not found')
def get_approx(img, contour, length_p=0.005):
"""获取逼近多边形
:param img: 处理图片
:param contour: 连通域
:param length_p: 逼近长度百分比
"""
img_adp = img.copy()
# 逼近长度计算
epsilon = length_p * cv2.arcLength(contour, True)
# 获取逼近多边形
approx = cv2.approxPolyDP(contour, epsilon, True)
return approx
def getBinary(img_or_path, minConnectedArea=1):
if isinstance(img_or_path, str):
i = cv2.imread(img_or_path)
elif isinstance(img_or_path, np.ndarray):
i = img_or_path
else:
raise TypeError('Input type error')
if len(i.shape) == 3:
img_gray = cv2.cvtColor(i, cv2.COLOR_BGR2GRAY)
else:
img_gray = i
ret, img_bin = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
_, labels, stats, centroids = cv2.connectedComponentsWithStats(img_bin, connectivity=4)
# labels:图像上每一像素的标记,用数字1、2、3…表示(不同的数字表示不同的连通域)
# stats:每一个标记的统计信息,是一个5列的矩阵,每一行对应每个连通区域的外接矩形的x、y、width、height和面积,示例如下: 0 0 720 720 291805
# centroids:连通域的中心点
# print(stats.shape)
(19,5)
# 删除区域小的图片
for index in range(1, stats.shape[0]):
if stats[index][4] < minConnectedArea or stats[index][4] < 0.0001 * (
stats[index][2] * stats[index][3]):
labels[labels == index] = 0
labels[labels != 0] = 1
img_bin = np.array(img_bin * labels).astype(np.uint8)
return i, img_bin
def getMultiRegion(img, img_bin):
"""
for multiple objs in same class
"""
if float(currentCV_version[0:3]) < 3.5:
img_bin, contours, hierarchy = cv2.findContours(
img_bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
else:
contours, hierarchy = cv2.findContours(img_bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
regions = []
if len(contours) >= 1:
for i in range(0, len(contours)):
if i:
# print(len(contours[i]))
region = get_approx(img, contours[i], 0.0001)
# print(region)
if region.shape[0] > 3:
regions.append(region)
return regions
else:
return []
def process(oriImg):
img, img_bin = getBinary(oriImg)
return getMultiRegion(img, img_bin)
def getMultiShapes(oriImgPath, labelPath, savePath='', labelYamlPath='', flag=False):
"""
oriImgPath : for change img to base64
n
labelPath : after fcn/unet or other machine learning objects outlining , the generated label img
or labelme labeled imgs(after json files converted to mask files)
n
savePath : json file save path
n
labelYamlPath : after json files converted to mask files. if doesn't have this file,should have a labeled img.
but the classes should change by yourself(labelme 4.2.9 has a bug,when change the label there will be an error.
)
n
"""
if isinstance(labelPath, str):
if os.path.exists(labelPath):
label_img = io.imread(labelPath)
else:
raise FileNotFoundError('mask/labeled image not found')
else:
label_img = labelPath
# print(np.max(label_img))
if np.max(label_img) > 127:
# print('too many classes! n maybe binary?')
label_img[label_img > 127] = 255
label_img[label_img != 255] = 0
label_img = label_img / 255
labelShape = label_img.shape
labels = readYmal(labelYamlPath, label_img)
# print(list(labels))
shapes = []
obj = dict()
obj['version'] = labelme_version
obj['flags'] = {}
for la in list(labels):
if la[1] > 0:
# print(la[0])
img = copy.deepcopy(label_img)
# img = label_img.copy()
img = img.astype(np.uint8)
img[img == la[1]] = 255
img[img != 255] = 0
region = process(img.astype(np.uint8))
if isinstance(region, np.ndarray):
points = []
for i in range(0, region.shape[0]):
print(len(region[i][0]))
points.append(region[i][0].tolist())
shape = dict()
shape['label'] = la[0]
shape['points'] = points
shape['group_id'] = 'null'
shape['shape_type'] = 'polygon'
shape['flags'] = {}
shapes.append(shape)
elif isinstance(region, list):
# print(len(region))
for subregion in region:
points = []
for i in range(0, subregion.shape[0]):
points.append(subregion[i][0].tolist())
shape = dict()
shape['label'] = la[0]
shape['points'] = points
shape['group_id'] = 'null'
shape['shape_type'] = 'polygon'
shape['flags'] = {}
shapes.append(shape)
# print(len(shapes))
obj['shapes'] = shapes
# print(shapes)
(_, imgname) = os.path.split(oriImgPath)
obj['imagePath'] = imgname
# print(obj['imagePath'])
obj['imageData'] = str(imgEncode(oriImgPath))
obj['imageHeight'] = labelShape[0]
obj['imageWidth'] = labelShape[1]
j = json.dumps(obj, sort_keys=True, indent=4)
# print(j)
if not flag:
saveJsonPath = savePath + os.sep + obj['imagePath'][:-4] + '.json'
# print(saveJsonPath)
with open(saveJsonPath, 'w') as f:
f.write(j)
rm(saveJsonPath)
else:
return j
if __name__ == "__main__":
path = ''
init_path = '%s/image' % path
mask_path = '%s/mask' % path
yaml_file = '%s/label_names.yaml' % path
save_json = '%s/json' % path
mask_images_list = glob(os.path.join(mask_path, "*.png"))
init_images_list = glob(os.path.join(init_path, "*.png"))
if not os.path.exists(save_json):
os.mkdir(save_json)
for mask_image, init_image in zip(mask_images_list, init_images_list):
print(mask_image)
getMultiShapes(init_image, mask_image, save_json, yaml_file)

label_name.yaml格式

label_names:
Tag1: 1
类别: 掩码像素值
....

参考

https://github.com/guchengxi1994/mask2json

最后

以上就是文静睫毛膏最近收集整理的关于批量分割mask转json的全部内容,更多相关批量分割mask转json内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(123)

评论列表共有 0 条评论

立即
投稿
返回
顶部