我是靠谱客的博主 大力小伙,最近开发中收集的这篇文章主要介绍vs2017 编译sigslot 并测试,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

vs2017 编译sigslot会出现好多错误,这里直接贴测试代码和修改后文件吧!

测试代码:

#include "sigslot.h"
#include <iostream>

class CSender
{
public:
	sigslot::signal0<> Click0;
	sigslot::signal1<int> Click1;
};

class CReceiver : public sigslot::has_slots<>
{
public:
	void OnClick0()
	{
		std::cout << "OnClick0..." << std::endl;
	}

	virtual void OnClick1(int a)
	{
		std::cout << "OnClick1 " << a <<" ..." << std::endl;
	}
};

class CDeliver : public CReceiver
{
public:
	void OnClick0()
	{
		std::cout << "CDeliver OnClick0..." << std::endl;
	}

	virtual void OnClick1(int a)
	{
		std::cout << "CDeliver OnClick1 " << a << " ..." << std::endl;
	}
};

int main()
{
	CReceiver recv;
	CDeliver deliver;
	CSender sender;

	sender.Click0.connect(&recv, &CReceiver::OnClick0);
	sender.Click1.connect(&recv, &CReceiver::OnClick1);
	sender.Click1.connect(&deliver, &CDeliver::OnClick1);

	sender.Click0();
	sender.Click1(2);

	sender.Click0.disconnect_all();
	sender.Click1.disconnect(&deliver);

	sender.Click0();
	sender.Click1(2);

	return 0;
}

修改后的sigslot.h

// sigslot.h: Signal/Slot classes
//
// Written by Sarah Thompson (sarah@telergy.com) 2002.
//
// License: Public domain. You are free to use this code however you like, with the proviso that
//          the author takes on no responsibility or liability for any use.
//
// QUICK DOCUMENTATION
//
//              (see also the full documentation at http://sigslot.sourceforge.net/)
//
//      #define switches
//          SIGSLOT_PURE_ISO            - Define this to force ISO C++ compliance. This also disables
//                                        all of the thread safety support on platforms where it is
//                                        available.
//
//          SIGSLOT_USE_POSIX_THREADS   - Force use of Posix threads when using a C++ compiler other than
//                                        gcc on a platform that supports Posix threads. (When using gcc,
//                                        this is the default - use SIGSLOT_PURE_ISO to disable this if
//                                        necessary)
//
//          SIGSLOT_DEFAULT_MT_POLICY   - Where thread support is enabled, this defaults to multi_threaded_global.
//                                        Otherwise, the default is single_threaded. #define this yourself to
//                                        override the default. In pure ISO mode, anything other than
//                                        single_threaded will cause a compiler error.
//
//      PLATFORM NOTES
//
//          Win32                       - On Win32, the WIN32 symbol must be #defined. Most mainstream
//                                        compilers do this by default, but you may need to define it
//                                        yourself if your build environment is less standard. This causes
//                                        the Win32 thread support to be compiled in and used automatically.
//
//          Unix/Linux/BSD, etc.        - If you're using gcc, it is assumed that you have Posix threads
//                                        available, so they are used automatically. You can override this
//                                        (as under Windows) with the SIGSLOT_PURE_ISO switch. If you're using
//                                        something other than gcc but still want to use Posix threads, you
//                                        need to #define SIGSLOT_USE_POSIX_THREADS.
//
//          ISO C++                     - If none of the supported platforms are detected, or if
//                                        SIGSLOT_PURE_ISO is defined, all multithreading support is turned off,
//                                        along with any code that might cause a pure ISO C++ environment to
//                                        complain. Before you ask, gcc -ansi -pedantic won't compile this
//                                        library, but gcc -ansi is fine. Pedantic mode seems to throw a lot of
//                                        errors that aren't really there. If you feel like investigating this,
//                                        please contact the author.
//
//
//      THREADING MODES
//
//          single_threaded             - Your program is assumed to be single threaded from the point of view
//                                        of signal/slot usage (i.e. all objects using signals and slots are
//                                        created and destroyed from a single thread). Behaviour if objects are
//                                        destroyed concurrently is undefined (i.e. you'll get the occasional
//                                        segmentation fault/memory exception).
//
//          multi_threaded_global       - Your program is assumed to be multi threaded. Objects using signals and
//                                        slots can be safely created and destroyed from any thread, even when
//                                        connections exist. In multi_threaded_global mode, this is achieved by a
//                                        single global mutex (actually a critical section on Windows because they
//                                        are faster). This option uses less OS resources, but results in more
//                                        opportunities for contention, possibly resulting in more context switches
//                                        than are strictly necessary.
//
//          multi_threaded_local        - Behaviour in this mode is essentially the same as multi_threaded_global,
//                                        except that each signal, and each object that inherits has_slots, all
//                                        have their own mutex/critical section. In practice, this means that
//                                        mutex collisions (and hence context switches) only happen if they are
//                                        absolutely essential. However, on some platforms, creating a lot of
//                                        mutexes can slow down the whole OS, so use this option with care.
//
//      USING THE LIBRARY
//
//          See the full documentation at http://sigslot.sourceforge.net/
//
//
// Libjingle specific:
// This file has been modified such that has_slots and signalx do not have to be
// using the same threading requirements. E.g. it is possible to connect a
// has_slots<single_threaded> and signal0<multi_threaded_local> or
// has_slots<multi_threaded_local> and signal0<single_threaded>.
// If has_slots is single threaded the user must ensure that it is not trying
// to connect or disconnect to signalx concurrently or data race may occur.
// If signalx is single threaded the user must ensure that disconnect, connect
// or signal is not happening concurrently or data race may occur.
 
#ifndef _SIGSLOT_H__
#define _SIGSLOT_H__
 
#include <list>
#include <set>
#include <stdlib.h>
 
// On our copy of sigslot.h, we set single threading as default.
#define SIGSLOT_DEFAULT_MT_POLICY single_threaded
 
#if defined(SIGSLOT_PURE_ISO) || (!defined(WIN32) && !defined(__GNUG__) && !defined(SIGSLOT_USE_POSIX_THREADS))
#   define _SIGSLOT_SINGLE_THREADED
#elif defined(WIN32)
#   define _SIGSLOT_HAS_WIN32_THREADS
#   if !defined(WIN32_LEAN_AND_MEAN)
#       define WIN32_LEAN_AND_MEAN
#   endif
#   include <windows.h>
#elif defined(__GNUG__) || defined(SIGSLOT_USE_POSIX_THREADS)
#   define _SIGSLOT_HAS_POSIX_THREADS
#   include <pthread.h>
#else
#   define _SIGSLOT_SINGLE_THREADED
#endif
 
#ifndef SIGSLOT_DEFAULT_MT_POLICY
#   ifdef _SIGSLOT_SINGLE_THREADED
#       define SIGSLOT_DEFAULT_MT_POLICY single_threaded
#   else
#       define SIGSLOT_DEFAULT_MT_POLICY multi_threaded_local
#   endif
#endif
 
// TODO: change this namespace to talk_base?
namespace sigslot {
 
    class single_threaded
    {
    public:
        single_threaded()
        {
            ;
        }
 
        virtual ~single_threaded()
        {
            ;
        }
 
        virtual void lock()
        {
            ;
        }
 
        virtual void unlock()
        {
            ;
        }
    };
 
#ifdef _SIGSLOT_HAS_WIN32_THREADS
    // The multi threading policies only get compiled in if they are enabled.
    class multi_threaded_global
    {
    public:
        multi_threaded_global()
        {
            static bool isinitialised = false;
 
            if(!isinitialised)
            {
                InitializeCriticalSection(get_critsec());
                isinitialised = true;
            }
        }
 
        multi_threaded_global(const multi_threaded_global&)
        {
            ;
        }
 
        virtual ~multi_threaded_global()
        {
            ;
        }
 
        virtual void lock()
        {
            EnterCriticalSection(get_critsec());
        }
 
        virtual void unlock()
        {
            LeaveCriticalSection(get_critsec());
        }
 
    private:
        CRITICAL_SECTION* get_critsec()
        {
            static CRITICAL_SECTION g_critsec;
            return &g_critsec;
        }
    };
 
    class multi_threaded_local
    {
    public:
        multi_threaded_local()
        {
            InitializeCriticalSection(&m_critsec);
        }
 
        multi_threaded_local(const multi_threaded_local&)
        {
            InitializeCriticalSection(&m_critsec);
        }
 
        virtual ~multi_threaded_local()
        {
            DeleteCriticalSection(&m_critsec);
        }
 
        virtual void lock()
        {
            EnterCriticalSection(&m_critsec);
        }
 
        virtual void unlock()
        {
            LeaveCriticalSection(&m_critsec);
        }
 
    private:
        CRITICAL_SECTION m_critsec;
    };
#endif // _SIGSLOT_HAS_WIN32_THREADS
 
#ifdef _SIGSLOT_HAS_POSIX_THREADS
    // The multi threading policies only get compiled in if they are enabled.
    class multi_threaded_global
    {
    public:
        multi_threaded_global()
        {
            pthread_mutex_init(get_mutex(), NULL);
        }
 
        multi_threaded_global(const multi_threaded_global&)
        {
            ;
        }
 
        virtual ~multi_threaded_global()
        {
            ;
        }
 
        virtual void lock()
        {
            pthread_mutex_lock(get_mutex());
        }
 
        virtual void unlock()
        {
            pthread_mutex_unlock(get_mutex());
        }
 
    private:
        pthread_mutex_t* get_mutex()
        {
            static pthread_mutex_t g_mutex;
            return &g_mutex;
        }
    };
 
    class multi_threaded_local
    {
    public:
        multi_threaded_local()
        {
            pthread_mutex_init(&m_mutex, NULL);
        }
 
        multi_threaded_local(const multi_threaded_local&)
        {
            pthread_mutex_init(&m_mutex, NULL);
        }
 
        virtual ~multi_threaded_local()
        {
            pthread_mutex_destroy(&m_mutex);
        }
 
        virtual void lock()
        {
            pthread_mutex_lock(&m_mutex);
        }
 
        virtual void unlock()
        {
            pthread_mutex_unlock(&m_mutex);
        }
 
    private:
        pthread_mutex_t m_mutex;
    };
#endif // _SIGSLOT_HAS_POSIX_THREADS
 
    template<class mt_policy>
    class lock_block
    {
    public:
        mt_policy *m_mutex;
 
        lock_block(mt_policy *mtx)
            : m_mutex(mtx)
        {
            m_mutex->lock();
        }
 
        ~lock_block()
        {
            m_mutex->unlock();
        }
    };
 
    class has_slots_interface;
 
    template<class mt_policy>
    class _connection_base0
    {
    public:
        virtual ~_connection_base0() {}
        virtual has_slots_interface* getdest() const = 0;
        virtual void emit() = 0;
        virtual _connection_base0* clone() = 0;
        virtual _connection_base0* duplicate(has_slots_interface* pnewdest) = 0;
    };
 
    template<class arg1_type, class mt_policy>
    class _connection_base1
    {
    public:
        virtual ~_connection_base1() {}
        virtual has_slots_interface* getdest() const = 0;
        virtual void emit(arg1_type) = 0;
        virtual _connection_base1<arg1_type, mt_policy>* clone() = 0;
        virtual _connection_base1<arg1_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
    };
 
    template<class arg1_type, class arg2_type, class mt_policy>
    class _connection_base2
    {
    public:
        virtual ~_connection_base2() {}
        virtual has_slots_interface* getdest() const = 0;
        virtual void emit(arg1_type, arg2_type) = 0;
        virtual _connection_base2<arg1_type, arg2_type, mt_policy>* clone() = 0;
        virtual _connection_base2<arg1_type, arg2_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
    };
 
    template<class arg1_type, class arg2_type, class arg3_type, class mt_policy>
    class _connection_base3
    {
    public:
        virtual ~_connection_base3() {}
        virtual has_slots_interface* getdest() const = 0;
        virtual void emit(arg1_type, arg2_type, arg3_type) = 0;
        virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* clone() = 0;
        virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
    };
 
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy>
    class _connection_base4
    {
    public:
        virtual ~_connection_base4() {}
        virtual has_slots_interface* getdest() const = 0;
        virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type) = 0;
        virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* clone() = 0;
        virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
    };
 
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    class arg5_type, class mt_policy>
    class _connection_base5
    {
    public:
        virtual ~_connection_base5() {}
        virtual has_slots_interface* getdest() const = 0;
        virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type) = 0;
        virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, mt_policy>* clone() = 0;
        virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
    };
 
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    class arg5_type, class arg6_type, class mt_policy>
    class _connection_base6
    {
    public:
        virtual ~_connection_base6() {}
        virtual has_slots_interface* getdest() const = 0;
        virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
            arg6_type) = 0;
        virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, mt_policy>* clone() = 0;
        virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
    };
 
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    class arg5_type, class arg6_type, class arg7_type, class mt_policy>
    class _connection_base7
    {
    public:
        virtual ~_connection_base7() {}
        virtual has_slots_interface* getdest() const = 0;
        virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
            arg6_type, arg7_type) = 0;
        virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, arg7_type, mt_policy>* clone() = 0;
        virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, arg7_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
    };
 
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    class arg5_type, class arg6_type, class arg7_type, class arg8_type, class mt_policy>
    class _connection_base8
    {
    public:
        virtual ~_connection_base8() {}
        virtual has_slots_interface* getdest() const = 0;
        virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
            arg6_type, arg7_type, arg8_type) = 0;
        virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* clone() = 0;
        virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
    };
 
    class _signal_base_interface
    {
    public:
        virtual void slot_disconnect(has_slots_interface* pslot) = 0;
        virtual void slot_duplicate(const has_slots_interface* poldslot, has_slots_interface* pnewslot) = 0;
    };
 
    template<class mt_policy>
    class _signal_base : public _signal_base_interface, public mt_policy
    {
    };
 
    class has_slots_interface
    {
    public:
        has_slots_interface()
        {
            ;
        }
 
        virtual void signal_connect(_signal_base_interface* sender) = 0;
 
        virtual void signal_disconnect(_signal_base_interface* sender) = 0;
 
        virtual ~has_slots_interface()
        {
        }
 
        virtual void disconnect_all() = 0;
    };
 
    template<class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
    class has_slots : public has_slots_interface, public mt_policy
    {
    private:
        typedef std::set<_signal_base_interface*> sender_set;
        typedef sender_set::const_iterator const_iterator;
 
    public:
        has_slots()
        {
            ;
        }
 
        has_slots(const has_slots& hs)
        {
            lock_block<mt_policy> lock(this);
            const_iterator it = hs.m_senders.begin();
            const_iterator itEnd = hs.m_senders.end();
 
            while(it != itEnd)
            {
                (*it)->slot_duplicate(&hs, this);
                m_senders.insert(*it);
                ++it;
            }
        }
 
        void signal_connect(_signal_base_interface* sender)
        {
            lock_block<mt_policy> lock(this);
            m_senders.insert(sender);
        }
 
        void signal_disconnect(_signal_base_interface* sender)
        {
            lock_block<mt_policy> lock(this);
            m_senders.erase(sender);
        }
 
        virtual ~has_slots()
        {
            disconnect_all();
        }
 
        void disconnect_all()
        {
            lock_block<mt_policy> lock(this);
            const_iterator it = m_senders.begin();
            const_iterator itEnd = m_senders.end();
 
            while(it != itEnd)
            {
                (*it)->slot_disconnect(this);
                ++it;
            }
 
            m_senders.erase(m_senders.begin(), m_senders.end());
        }
 
    private:
        sender_set m_senders;
    };
 
    template<class mt_policy>
    class _signal_base0 : public _signal_base<mt_policy>
    {
    public:
        typedef std::list<_connection_base0<mt_policy> *>  connections_list;
 
        _signal_base0()
        {
            ;
        }
 
        _signal_base0(const _signal_base0& s)
            : _signal_base<mt_policy>(s)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = s.m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = s.m_connected_slots.end();
 
            while(it != itEnd)
            {
                (*it)->getdest()->signal_connect(this);
                m_connected_slots.push_back((*it)->clone());
 
                ++it;
            }
        }
 
        ~_signal_base0()
        {
            disconnect_all();
        }
 
        bool is_empty()
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
            return it == itEnd;
        }
 
        void disconnect_all()
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                (*it)->getdest()->signal_disconnect(this);
                delete *it;
 
                ++it;
            }
 
            m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
        }
 
#ifdef _DEBUG
        bool connected(has_slots_interface* pclass)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
                if ((*it)->getdest() == pclass)
                    return true;
                it = itNext;
            }
            return false;
        }
#endif
 
        void disconnect(has_slots_interface* pclass)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                if((*it)->getdest() == pclass)
                {
                    delete *it;
                    m_connected_slots.erase(it);
                    pclass->signal_disconnect(this);
                    return;
                }
 
                ++it;
            }
        }
 
        void slot_disconnect(has_slots_interface* pslot)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                typename connections_list::iterator itNext = it;
                ++itNext;
 
                if((*it)->getdest() == pslot)
                {
                    delete *it;
                    m_connected_slots.erase(it);
                }
 
                it = itNext;
            }
        }
 
        void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                if((*it)->getdest() == oldtarget)
                {
                    m_connected_slots.push_back((*it)->duplicate(newtarget));
                }
 
                ++it;
            }
        }
 
    protected:
        connections_list m_connected_slots;
    };
 
    template<class arg1_type, class mt_policy>
    class _signal_base1 : public _signal_base<mt_policy>
    {
    public:
        typedef std::list<_connection_base1<arg1_type, mt_policy> *>  connections_list;
 
        _signal_base1()
        {
            ;
        }
 
        _signal_base1(const _signal_base1<arg1_type, mt_policy>& s)
            : _signal_base<mt_policy>(s)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = s.m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = s.m_connected_slots.end();
 
            while(it != itEnd)
            {
                (*it)->getdest()->signal_connect(this);
                m_connected_slots.push_back((*it)->clone());
 
                ++it;
            }
        }
 
        void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                if((*it)->getdest() == oldtarget)
                {
                    m_connected_slots.push_back((*it)->duplicate(newtarget));
                }
 
                ++it;
            }
        }
 
        ~_signal_base1()
        {
            disconnect_all();
        }
 
        bool is_empty()
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
            return it == itEnd;
        }
 
        void disconnect_all()
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                (*it)->getdest()->signal_disconnect(this);
                delete *it;
 
                ++it;
            }
 
            m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
        }
 
#ifdef _DEBUG
        bool connected(has_slots_interface* pclass)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
                if ((*it)->getdest() == pclass)
                    return true;
                it = itNext;
            }
            return false;
        }
#endif
 
        void disconnect(has_slots_interface* pclass)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                if((*it)->getdest() == pclass)
                {
                    delete *it;
                    m_connected_slots.erase(it);
                    pclass->signal_disconnect(this);
                    return;
                }
 
                ++it;
            }
        }
 
        void slot_disconnect(has_slots_interface* pslot)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                typename connections_list::iterator itNext = it;
                ++itNext;
 
                if((*it)->getdest() == pslot)
                {
                    delete *it;
                    m_connected_slots.erase(it);
                }
 
                it = itNext;
            }
        }
 
 
    protected:
        connections_list m_connected_slots;
    };
 
    template<class arg1_type, class arg2_type, class mt_policy>
    class _signal_base2 : public _signal_base<mt_policy>
    {
    public:
        typedef std::list<_connection_base2<arg1_type, arg2_type, mt_policy> *>
            connections_list;
 
        _signal_base2()
        {
            ;
        }
 
        _signal_base2(const _signal_base2<arg1_type, arg2_type, mt_policy>& s)
            : _signal_base<mt_policy>(s)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = s.m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = s.m_connected_slots.end();
 
            while(it != itEnd)
            {
                (*it)->getdest()->signal_connect(this);
                m_connected_slots.push_back((*it)->clone());
 
                ++it;
            }
        }
 
        void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                if((*it)->getdest() == oldtarget)
                {
                    m_connected_slots.push_back((*it)->duplicate(newtarget));
                }
 
                ++it;
            }
        }
 
        ~_signal_base2()
        {
            disconnect_all();
        }
 
        bool is_empty()
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
            return it == itEnd;
        }
 
        void disconnect_all()
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                (*it)->getdest()->signal_disconnect(this);
                delete *it;
 
                ++it;
            }
 
            m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
        }
 
#ifdef _DEBUG
        bool connected(has_slots_interface* pclass)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
                if ((*it)->getdest() == pclass)
                    return true;
                it = itNext;
            }
            return false;
        }
#endif
 
        void disconnect(has_slots_interface* pclass)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                if((*it)->getdest() == pclass)
                {
                    delete *it;
                    m_connected_slots.erase(it);
                    pclass->signal_disconnect(this);
                    return;
                }
 
                ++it;
            }
        }
 
        void slot_disconnect(has_slots_interface* pslot)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                typename connections_list::iterator itNext = it;
                ++itNext;
 
                if((*it)->getdest() == pslot)
                {
                    delete *it;
                    m_connected_slots.erase(it);
                }
 
                it = itNext;
            }
        }
 
    protected:
        connections_list m_connected_slots;
    };
 
    template<class arg1_type, class arg2_type, class arg3_type, class mt_policy>
    class _signal_base3 : public _signal_base<mt_policy>
    {
    public:
        typedef std::list<_connection_base3<arg1_type, arg2_type, arg3_type, mt_policy> *>
            connections_list;
 
        _signal_base3()
        {
            ;
        }
 
        _signal_base3(const _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>& s)
            : _signal_base<mt_policy>(s)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = s.m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = s.m_connected_slots.end();
 
            while(it != itEnd)
            {
                (*it)->getdest()->signal_connect(this);
                m_connected_slots.push_back((*it)->clone());
 
                ++it;
            }
        }
 
        void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                if((*it)->getdest() == oldtarget)
                {
                    m_connected_slots.push_back((*it)->duplicate(newtarget));
                }
 
                ++it;
            }
        }
 
        ~_signal_base3()
        {
            disconnect_all();
        }
 
        bool is_empty()
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
            return it == itEnd;
        }
 
        void disconnect_all()
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                (*it)->getdest()->signal_disconnect(this);
                delete *it;
 
                ++it;
            }
 
            m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
        }
 
#ifdef _DEBUG
        bool connected(has_slots_interface* pclass)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
                if ((*it)->getdest() == pclass)
                    return true;
                it = itNext;
            }
            return false;
        }
#endif
 
        void disconnect(has_slots_interface* pclass)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                if((*it)->getdest() == pclass)
                {
                    delete *it;
                    m_connected_slots.erase(it);
                    pclass->signal_disconnect(this);
                    return;
                }
 
                ++it;
            }
        }
 
        void slot_disconnect(has_slots_interface* pslot)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                typename connections_list::iterator itNext = it;
                ++itNext;
 
                if((*it)->getdest() == pslot)
                {
                    delete *it;
                    m_connected_slots.erase(it);
                }
 
                it = itNext;
            }
        }
 
    protected:
        connections_list m_connected_slots;
    };
 
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy>
    class _signal_base4 : public _signal_base<mt_policy>
    {
    public:
        typedef std::list<_connection_base4<arg1_type, arg2_type, arg3_type,
            arg4_type, mt_policy> *>  connections_list;
 
        _signal_base4()
        {
            ;
        }
 
        _signal_base4(const _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>& s)
            : _signal_base<mt_policy>(s)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = s.m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = s.m_connected_slots.end();
 
            while(it != itEnd)
            {
                (*it)->getdest()->signal_connect(this);
                m_connected_slots.push_back((*it)->clone());
 
                ++it;
            }
        }
 
        void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                if((*it)->getdest() == oldtarget)
                {
                    m_connected_slots.push_back((*it)->duplicate(newtarget));
                }
 
                ++it;
            }
        }
 
        ~_signal_base4()
        {
            disconnect_all();
        }
 
        bool is_empty()
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
            return it == itEnd;
        }
 
        void disconnect_all()
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                (*it)->getdest()->signal_disconnect(this);
                delete *it;
 
                ++it;
            }
 
            m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
        }
 
#ifdef _DEBUG
        bool connected(has_slots_interface* pclass)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
                if ((*it)->getdest() == pclass)
                    return true;
                it = itNext;
            }
            return false;
        }
#endif
 
        void disconnect(has_slots_interface* pclass)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                if((*it)->getdest() == pclass)
                {
                    delete *it;
                    m_connected_slots.erase(it);
                    pclass->signal_disconnect(this);
                    return;
                }
 
                ++it;
            }
        }
 
        void slot_disconnect(has_slots_interface* pslot)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                typename connections_list::iterator itNext = it;
                ++itNext;
 
                if((*it)->getdest() == pslot)
                {
                    delete *it;
                    m_connected_slots.erase(it);
                }
 
                it = itNext;
            }
        }
 
    protected:
        connections_list m_connected_slots;
    };
 
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    class arg5_type, class mt_policy>
    class _signal_base5 : public _signal_base<mt_policy>
    {
    public:
        typedef std::list<_connection_base5<arg1_type, arg2_type, arg3_type,
            arg4_type, arg5_type, mt_policy> *>  connections_list;
 
        _signal_base5()
        {
            ;
        }
 
        _signal_base5(const _signal_base5<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, mt_policy>& s)
            : _signal_base<mt_policy>(s)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = s.m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = s.m_connected_slots.end();
 
            while(it != itEnd)
            {
                (*it)->getdest()->signal_connect(this);
                m_connected_slots.push_back((*it)->clone());
 
                ++it;
            }
        }
 
        void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                if((*it)->getdest() == oldtarget)
                {
                    m_connected_slots.push_back((*it)->duplicate(newtarget));
                }
 
                ++it;
            }
        }
 
        ~_signal_base5()
        {
            disconnect_all();
        }
 
        bool is_empty()
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
            return it == itEnd;
        }
 
        void disconnect_all()
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                (*it)->getdest()->signal_disconnect(this);
                delete *it;
 
                ++it;
            }
 
            m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
        }
 
#ifdef _DEBUG
        bool connected(has_slots_interface* pclass)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
                if ((*it)->getdest() == pclass)
                    return true;
                it = itNext;
            }
            return false;
        }
#endif
 
        void disconnect(has_slots_interface* pclass)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                if((*it)->getdest() == pclass)
                {
                    delete *it;
                    m_connected_slots.erase(it);
                    pclass->signal_disconnect(this);
                    return;
                }
 
                ++it;
            }
        }
 
        void slot_disconnect(has_slots_interface* pslot)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                typename connections_list::iterator itNext = it;
                ++itNext;
 
                if((*it)->getdest() == pslot)
                {
                    delete *it;
                    m_connected_slots.erase(it);
                }
 
                it = itNext;
            }
        }
 
    protected:
        connections_list m_connected_slots;
    };
 
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    class arg5_type, class arg6_type, class mt_policy>
    class _signal_base6 : public _signal_base<mt_policy>
    {
    public:
        typedef std::list<_connection_base6<arg1_type, arg2_type, arg3_type,
            arg4_type, arg5_type, arg6_type, mt_policy> *>  connections_list;
 
        _signal_base6()
        {
            ;
        }
 
        _signal_base6(const _signal_base6<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, mt_policy>& s)
            : _signal_base<mt_policy>(s)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = s.m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = s.m_connected_slots.end();
 
            while(it != itEnd)
            {
                (*it)->getdest()->signal_connect(this);
                m_connected_slots.push_back((*it)->clone());
 
                ++it;
            }
        }
 
        void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                if((*it)->getdest() == oldtarget)
                {
                    m_connected_slots.push_back((*it)->duplicate(newtarget));
                }
 
                ++it;
            }
        }
 
        ~_signal_base6()
        {
            disconnect_all();
        }
 
        bool is_empty()
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
            return it == itEnd;
        }
 
        void disconnect_all()
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                (*it)->getdest()->signal_disconnect(this);
                delete *it;
 
                ++it;
            }
 
            m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
        }
 
#ifdef _DEBUG
        bool connected(has_slots_interface* pclass)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
                if ((*it)->getdest() == pclass)
                    return true;
                it = itNext;
            }
            return false;
        }
#endif
 
        void disconnect(has_slots_interface* pclass)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                if((*it)->getdest() == pclass)
                {
                    delete *it;
                    m_connected_slots.erase(it);
                    pclass->signal_disconnect(this);
                    return;
                }
 
                ++it;
            }
        }
 
        void slot_disconnect(has_slots_interface* pslot)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                typename connections_list::iterator itNext = it;
                ++itNext;
 
                if((*it)->getdest() == pslot)
                {
                    delete *it;
                    m_connected_slots.erase(it);
                }
 
                it = itNext;
            }
        }
 
    protected:
        connections_list m_connected_slots;
    };
 
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    class arg5_type, class arg6_type, class arg7_type, class mt_policy>
    class _signal_base7 : public _signal_base<mt_policy>
    {
    public:
        typedef std::list<_connection_base7<arg1_type, arg2_type, arg3_type,
            arg4_type, arg5_type, arg6_type, arg7_type, mt_policy> *>  connections_list;
 
        _signal_base7()
        {
            ;
        }
 
        _signal_base7(const _signal_base7<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, arg7_type, mt_policy>& s)
            : _signal_base<mt_policy>(s)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = s.m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = s.m_connected_slots.end();
 
            while(it != itEnd)
            {
                (*it)->getdest()->signal_connect(this);
                m_connected_slots.push_back((*it)->clone());
 
                ++it;
            }
        }
 
        void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                if((*it)->getdest() == oldtarget)
                {
                    m_connected_slots.push_back((*it)->duplicate(newtarget));
                }
 
                ++it;
            }
        }
 
        ~_signal_base7()
        {
            disconnect_all();
        }
 
        bool is_empty()
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
            return it == itEnd;
        }
 
        void disconnect_all()
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                (*it)->getdest()->signal_disconnect(this);
                delete *it;
 
                ++it;
            }
 
            m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
        }
 
#ifdef _DEBUG
        bool connected(has_slots_interface* pclass)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
                if ((*it)->getdest() == pclass)
                    return true;
                it = itNext;
            }
            return false;
        }
#endif
 
        void disconnect(has_slots_interface* pclass)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                if((*it)->getdest() == pclass)
                {
                    delete *it;
                    m_connected_slots.erase(it);
                    pclass->signal_disconnect(this);
                    return;
                }
 
                ++it;
            }
        }
 
        void slot_disconnect(has_slots_interface* pslot)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                typename connections_list::iterator itNext = it;
                ++itNext;
 
                if((*it)->getdest() == pslot)
                {
                    delete *it;
                    m_connected_slots.erase(it);
                }
 
                it = itNext;
            }
        }
 
    protected:
        connections_list m_connected_slots;
    };
 
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    class arg5_type, class arg6_type, class arg7_type, class arg8_type, class mt_policy>
    class _signal_base8 : public _signal_base<mt_policy>
    {
    public:
        typedef std::list<_connection_base8<arg1_type, arg2_type, arg3_type,
            arg4_type, arg5_type, arg6_type, arg7_type, arg8_type, mt_policy> *>
            connections_list;
 
        _signal_base8()
        {
            ;
        }
 
        _signal_base8(const _signal_base8<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>& s)
            : _signal_base<mt_policy>(s)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = s.m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = s.m_connected_slots.end();
 
            while(it != itEnd)
            {
                (*it)->getdest()->signal_connect(this);
                m_connected_slots.push_back((*it)->clone());
 
                ++it;
            }
        }
 
        void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                if((*it)->getdest() == oldtarget)
                {
                    m_connected_slots.push_back((*it)->duplicate(newtarget));
                }
 
                ++it;
            }
        }
 
        ~_signal_base8()
        {
            disconnect_all();
        }
 
        bool is_empty()
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
            return it == itEnd;
        }
 
        void disconnect_all()
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                (*it)->getdest()->signal_disconnect(this);
                delete *it;
 
                ++it;
            }
 
            m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
        }
 
#ifdef _DEBUG
        bool connected(has_slots_interface* pclass)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
                if ((*it)->getdest() == pclass)
                    return true;
                it = itNext;
            }
            return false;
        }
#endif
 
        void disconnect(has_slots_interface* pclass)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                if((*it)->getdest() == pclass)
                {
                    delete *it;
                    m_connected_slots.erase(it);
                    pclass->signal_disconnect(this);
                    return;
                }
 
                ++it;
            }
        }
 
        void slot_disconnect(has_slots_interface* pslot)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::iterator it = m_connected_slots.begin();
            typename connections_list::iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                typename connections_list::iterator itNext = it;
                ++itNext;
 
                if((*it)->getdest() == pslot)
                {
                    delete *it;
                    m_connected_slots.erase(it);
                }
 
                it = itNext;
            }
        }
 
    protected:
        connections_list m_connected_slots;
    };
 
 
    template<class dest_type, class mt_policy>
    class _connection0 : public _connection_base0<mt_policy>
    {
    public:
        _connection0()
        {
            m_pobject = NULL;
            m_pmemfun = NULL;
        }
 
        _connection0(dest_type* pobject, void (dest_type::*pmemfun)())
        {
            m_pobject = pobject;
            m_pmemfun = pmemfun;
        }
 
        virtual ~_connection0()
        {
        }
 
        virtual _connection_base0<mt_policy>* clone()
        {
            return new _connection0<dest_type, mt_policy>(*this);
        }
 
        virtual _connection_base0<mt_policy>* duplicate(has_slots_interface* pnewdest)
        {
            return new _connection0<dest_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
        }
 
        virtual void emit()
        {
            (m_pobject->*m_pmemfun)();
        }
 
        virtual has_slots_interface* getdest() const
        {
            return m_pobject;
        }
 
    private:
        dest_type* m_pobject;
        void (dest_type::* m_pmemfun)();
    };
 
    template<class dest_type, class arg1_type, class mt_policy>
    class _connection1 : public _connection_base1<arg1_type, mt_policy>
    {
    public:
        _connection1()
        {
            m_pobject = NULL;
            m_pmemfun = NULL;
        }
 
        _connection1(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type))
        {
            m_pobject = pobject;
            m_pmemfun = pmemfun;
        }
 
        virtual ~_connection1()
        {
        }
 
        virtual _connection_base1<arg1_type, mt_policy>* clone()
        {
            return new _connection1<dest_type, arg1_type, mt_policy>(*this);
        }
 
        virtual _connection_base1<arg1_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
        {
            return new _connection1<dest_type, arg1_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
        }
 
        virtual void emit(arg1_type a1)
        {
            (m_pobject->*m_pmemfun)(a1);
        }
 
        virtual has_slots_interface* getdest() const
        {
            return m_pobject;
        }
 
    private:
        dest_type* m_pobject;
        void (dest_type::* m_pmemfun)(arg1_type);
    };
 
    template<class dest_type, class arg1_type, class arg2_type, class mt_policy>
    class _connection2 : public _connection_base2<arg1_type, arg2_type, mt_policy>
    {
    public:
        _connection2()
        {
            m_pobject = NULL;
            m_pmemfun = NULL;
        }
 
        _connection2(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
            arg2_type))
        {
            m_pobject = pobject;
            m_pmemfun = pmemfun;
        }
 
        virtual ~_connection2()
        {
        }
 
        virtual _connection_base2<arg1_type, arg2_type, mt_policy>* clone()
        {
            return new _connection2<dest_type, arg1_type, arg2_type, mt_policy>(*this);
        }
 
        virtual _connection_base2<arg1_type, arg2_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
        {
            return new _connection2<dest_type, arg1_type, arg2_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
        }
 
        virtual void emit(arg1_type a1, arg2_type a2)
        {
            (m_pobject->*m_pmemfun)(a1, a2);
        }
 
        virtual has_slots_interface* getdest() const
        {
            return m_pobject;
        }
 
    private:
        dest_type* m_pobject;
        void (dest_type::* m_pmemfun)(arg1_type, arg2_type);
    };
 
    template<class dest_type, class arg1_type, class arg2_type, class arg3_type, class mt_policy>
    class _connection3 : public _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>
    {
    public:
        _connection3()
        {
            m_pobject = NULL;
            m_pmemfun = NULL;
        }
 
        _connection3(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
            arg2_type, arg3_type))
        {
            m_pobject = pobject;
            m_pmemfun = pmemfun;
        }
 
        virtual ~_connection3()
        {
        }
 
        virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* clone()
        {
            return new _connection3<dest_type, arg1_type, arg2_type, arg3_type, mt_policy>(*this);
        }
 
        virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
        {
            return new _connection3<dest_type, arg1_type, arg2_type, arg3_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
        }
 
        virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3)
        {
            (m_pobject->*m_pmemfun)(a1, a2, a3);
        }
 
        virtual has_slots_interface* getdest() const
        {
            return m_pobject;
        }
 
    private:
        dest_type* m_pobject;
        void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type);
    };
 
    template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
    class arg4_type, class mt_policy>
    class _connection4 : public _connection_base4<arg1_type, arg2_type,
        arg3_type, arg4_type, mt_policy>
    {
    public:
        _connection4()
        {
            m_pobject = NULL;
            m_pmemfun = NULL;
        }
 
        _connection4(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
            arg2_type, arg3_type, arg4_type))
        {
            m_pobject = pobject;
            m_pmemfun = pmemfun;
        }
 
        virtual ~_connection4()
        {
        }
 
        virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* clone()
        {
            return new _connection4<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>(*this);
        }
 
        virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
        {
            return new _connection4<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
        }
 
        virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3,
            arg4_type a4)
        {
            (m_pobject->*m_pmemfun)(a1, a2, a3, a4);
        }
 
        virtual has_slots_interface* getdest() const
        {
            return m_pobject;
        }
 
    private:
        dest_type* m_pobject;
        void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type,
            arg4_type);
    };
 
    template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
    class arg4_type, class arg5_type, class mt_policy>
    class _connection5 : public _connection_base5<arg1_type, arg2_type,
        arg3_type, arg4_type, arg5_type, mt_policy>
    {
    public:
        _connection5()
        {
            m_pobject = NULL;
            m_pmemfun = NULL;
        }
 
        _connection5(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
            arg2_type, arg3_type, arg4_type, arg5_type))
        {
            m_pobject = pobject;
            m_pmemfun = pmemfun;
        }
 
        virtual ~_connection5()
        {
        }
 
        virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, mt_policy>* clone()
        {
            return new _connection5<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
                arg5_type, mt_policy>(*this);
        }
 
        virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
        {
            return new _connection5<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
                arg5_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
        }
 
        virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
            arg5_type a5)
        {
            (m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5);
        }
 
        virtual has_slots_interface* getdest() const
        {
            return m_pobject;
        }
 
    private:
        dest_type* m_pobject;
        void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type);
    };
 
    template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
    class arg4_type, class arg5_type, class arg6_type, class mt_policy>
    class _connection6 : public _connection_base6<arg1_type, arg2_type,
        arg3_type, arg4_type, arg5_type, arg6_type, mt_policy>
    {
    public:
        _connection6()
        {
            m_pobject = NULL;
            m_pmemfun = NULL;
        }
 
        _connection6(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
            arg2_type, arg3_type, arg4_type, arg5_type, arg6_type))
        {
            m_pobject = pobject;
            m_pmemfun = pmemfun;
        }
 
        virtual ~_connection6()
        {
        }
 
        virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, mt_policy>* clone()
        {
            return new _connection6<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
                arg5_type, arg6_type, mt_policy>(*this);
        }
 
        virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
        {
            return new _connection6<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
                arg5_type, arg6_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
        }
 
        virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
            arg5_type a5, arg6_type a6)
        {
            (m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6);
        }
 
        virtual has_slots_interface* getdest() const
        {
            return m_pobject;
        }
 
    private:
        dest_type* m_pobject;
        void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type);
    };
 
    template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
    class arg4_type, class arg5_type, class arg6_type, class arg7_type, class mt_policy>
    class _connection7 : public _connection_base7<arg1_type, arg2_type,
        arg3_type, arg4_type, arg5_type, arg6_type, arg7_type, mt_policy>
    {
    public:
        _connection7()
        {
            m_pobject = NULL;
            m_pmemfun = NULL;
        }
 
        _connection7(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
            arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, arg7_type))
        {
            m_pobject = pobject;
            m_pmemfun = pmemfun;
        }
 
        virtual ~_connection7()
        {
        }
 
        virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, arg7_type, mt_policy>* clone()
        {
            return new _connection7<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
                arg5_type, arg6_type, arg7_type, mt_policy>(*this);
        }
 
        virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, arg7_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
        {
            return new _connection7<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
                arg5_type, arg6_type, arg7_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
        }
 
        virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
            arg5_type a5, arg6_type a6, arg7_type a7)
        {
            (m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6, a7);
        }
 
        virtual has_slots_interface* getdest() const
        {
            return m_pobject;
        }
 
    private:
        dest_type* m_pobject;
        void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, arg7_type);
    };
 
    template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
    class arg4_type, class arg5_type, class arg6_type, class arg7_type,
    class arg8_type, class mt_policy>
    class _connection8 : public _connection_base8<arg1_type, arg2_type,
        arg3_type, arg4_type, arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>
    {
    public:
        _connection8()
        {
            m_pobject = NULL;
            m_pmemfun = NULL;
        }
 
        _connection8(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
            arg2_type, arg3_type, arg4_type, arg5_type, arg6_type,
            arg7_type, arg8_type))
        {
            m_pobject = pobject;
            m_pmemfun = pmemfun;
        }
 
        virtual ~_connection8()
        {
        }
 
        virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* clone()
        {
            return new _connection8<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
                arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>(*this);
        }
 
        virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
        {
            return new _connection8<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
                arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
        }
 
        virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
            arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8)
        {
            (m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6, a7, a8);
        }
 
        virtual has_slots_interface* getdest() const
        {
            return m_pobject;
        }
 
    private:
        dest_type* m_pobject;
        void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, arg7_type, arg8_type);
    };
 
    template<class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
    class signal0 : public _signal_base0<mt_policy>
    {
    public:
        typedef _signal_base0<mt_policy> base;
        typedef typename base::connections_list connections_list;
        using base::m_connected_slots;
 
        signal0()
        {
            ;
        }
 
        signal0(const signal0<mt_policy>& s)
            : _signal_base0<mt_policy>(s)
        {
            ;
        }
 
        template<class desttype>
        void connect(desttype* pclass, void (desttype::*pmemfun)())
        {
            lock_block<mt_policy> lock(this);
            _connection0<desttype, mt_policy>* conn =
                new _connection0<desttype, mt_policy>(pclass, pmemfun);
            m_connected_slots.push_back(conn);
            pclass->signal_connect(this);
        }
 
        void emit()
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
 
                (*it)->emit();
 
                it = itNext;
            }
        }
 
        void operator()()
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
 
                (*it)->emit();
 
                it = itNext;
            }
        }
    };
 
    template<class arg1_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
    class signal1 : public _signal_base1<arg1_type, mt_policy>
    {
    public:
        typedef _signal_base1<arg1_type, mt_policy> base;
        typedef typename base::connections_list connections_list;
        using base::m_connected_slots;
 
        signal1()
        {
            ;
        }
 
        signal1(const signal1<arg1_type, mt_policy>& s)
            : _signal_base1<arg1_type, mt_policy>(s)
        {
            ;
        }
 
        template<class desttype>
        void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type))
        {
            lock_block<mt_policy> lock(this);
            _connection1<desttype, arg1_type, mt_policy>* conn =
                new _connection1<desttype, arg1_type, mt_policy>(pclass, pmemfun);
            m_connected_slots.push_back(conn);
            pclass->signal_connect(this);
        }
 
        void emit(arg1_type a1)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
 
                (*it)->emit(a1);
 
                it = itNext;
            }
        }
 
        void operator()(arg1_type a1)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
 
                (*it)->emit(a1);
 
                it = itNext;
            }
        }
    };
 
    template<class arg1_type, class arg2_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
    class signal2 : public _signal_base2<arg1_type, arg2_type, mt_policy>
    {
    public:
        typedef _signal_base2<arg1_type, arg2_type, mt_policy> base;
        typedef typename base::connections_list connections_list;
        using base::m_connected_slots;
 
        signal2()
        {
            ;
        }
 
        signal2(const signal2<arg1_type, arg2_type, mt_policy>& s)
            : _signal_base2<arg1_type, arg2_type, mt_policy>(s)
        {
            ;
        }
 
        template<class desttype>
        void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
            arg2_type))
        {
            lock_block<mt_policy> lock(this);
            _connection2<desttype, arg1_type, arg2_type, mt_policy>* conn = new
                _connection2<desttype, arg1_type, arg2_type, mt_policy>(pclass, pmemfun);
            m_connected_slots.push_back(conn);
            pclass->signal_connect(this);
        }
 
        void emit(arg1_type a1, arg2_type a2)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
 
                (*it)->emit(a1, a2);
 
                it = itNext;
            }
        }
 
        void operator()(arg1_type a1, arg2_type a2)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
 
                (*it)->emit(a1, a2);
 
                it = itNext;
            }
        }
    };
 
    template<class arg1_type, class arg2_type, class arg3_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
    class signal3 : public _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>
    {
    public:
        typedef _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy> base;
        typedef typename base::connections_list connections_list;
        using base::m_connected_slots;
 
        signal3()
        {
            ;
        }
 
        signal3(const signal3<arg1_type, arg2_type, arg3_type, mt_policy>& s)
            : _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>(s)
        {
            ;
        }
 
        template<class desttype>
        void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
            arg2_type, arg3_type))
        {
            lock_block<mt_policy> lock(this);
            _connection3<desttype, arg1_type, arg2_type, arg3_type, mt_policy>* conn =
                new _connection3<desttype, arg1_type, arg2_type, arg3_type, mt_policy>(pclass,
                pmemfun);
            m_connected_slots.push_back(conn);
            pclass->signal_connect(this);
        }
 
        void emit(arg1_type a1, arg2_type a2, arg3_type a3)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
 
                (*it)->emit(a1, a2, a3);
 
                it = itNext;
            }
        }
 
        void operator()(arg1_type a1, arg2_type a2, arg3_type a3)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
 
                (*it)->emit(a1, a2, a3);
 
                it = itNext;
            }
        }
    };
 
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
    class signal4 : public _signal_base4<arg1_type, arg2_type, arg3_type,
        arg4_type, mt_policy>
    {
    public:
        typedef _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy> base;
        typedef typename base::connections_list connections_list;
        using base::m_connected_slots;
 
        signal4()
        {
            ;
        }
 
        signal4(const signal4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>& s)
            : _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>(s)
        {
            ;
        }
 
        template<class desttype>
        void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
            arg2_type, arg3_type, arg4_type))
        {
            lock_block<mt_policy> lock(this);
            _connection4<desttype, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>*
                conn = new _connection4<desttype, arg1_type, arg2_type, arg3_type,
                arg4_type, mt_policy>(pclass, pmemfun);
            m_connected_slots.push_back(conn);
            pclass->signal_connect(this);
        }
 
        void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
 
                (*it)->emit(a1, a2, a3, a4);
 
                it = itNext;
            }
        }
 
        void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
 
                (*it)->emit(a1, a2, a3, a4);
 
                it = itNext;
            }
        }
    };
 
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    class arg5_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
    class signal5 : public _signal_base5<arg1_type, arg2_type, arg3_type,
        arg4_type, arg5_type, mt_policy>
    {
    public:
        typedef _signal_base5<arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, mt_policy> base;
        typedef typename base::connections_list connections_list;
        using base::m_connected_slots;
 
        signal5()
        {
            ;
        }
 
        signal5(const signal5<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, mt_policy>& s)
            : _signal_base5<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, mt_policy>(s)
        {
            ;
        }
 
        template<class desttype>
        void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
            arg2_type, arg3_type, arg4_type, arg5_type))
        {
            lock_block<mt_policy> lock(this);
            _connection5<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
                arg5_type, mt_policy>* conn = new _connection5<desttype, arg1_type, arg2_type,
                arg3_type, arg4_type, arg5_type, mt_policy>(pclass, pmemfun);
            m_connected_slots.push_back(conn);
            pclass->signal_connect(this);
        }
 
        void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
            arg5_type a5)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
 
                (*it)->emit(a1, a2, a3, a4, a5);
 
                it = itNext;
            }
        }
 
        void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
            arg5_type a5)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
 
                (*it)->emit(a1, a2, a3, a4, a5);
 
                it = itNext;
            }
        }
    };
 
 
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    class arg5_type, class arg6_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
    class signal6 : public _signal_base6<arg1_type, arg2_type, arg3_type,
        arg4_type, arg5_type, arg6_type, mt_policy>
    {
    public:
        typedef _signal_base6<arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, mt_policy> base;
        typedef typename base::connections_list connections_list;
        using base::m_connected_slots;
 
        signal6()
        {
            ;
        }
 
        signal6(const signal6<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, mt_policy>& s)
            : _signal_base6<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, mt_policy>(s)
        {
            ;
        }
 
        template<class desttype>
        void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
            arg2_type, arg3_type, arg4_type, arg5_type, arg6_type))
        {
            lock_block<mt_policy> lock(this);
            _connection6<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
                arg5_type, arg6_type, mt_policy>* conn =
                new _connection6<desttype, arg1_type, arg2_type, arg3_type,
                arg4_type, arg5_type, arg6_type, mt_policy>(pclass, pmemfun);
            m_connected_slots.push_back(conn);
            pclass->signal_connect(this);
        }
 
        void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
            arg5_type a5, arg6_type a6)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
 
                (*it)->emit(a1, a2, a3, a4, a5, a6);
 
                it = itNext;
            }
        }
 
        void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
            arg5_type a5, arg6_type a6)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
 
                (*it)->emit(a1, a2, a3, a4, a5, a6);
 
                it = itNext;
            }
        }
    };
 
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    class arg5_type, class arg6_type, class arg7_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
    class signal7 : public _signal_base7<arg1_type, arg2_type, arg3_type,
        arg4_type, arg5_type, arg6_type, arg7_type, mt_policy>
    {
    public:
        typedef _signal_base7<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, arg7_type, mt_policy> base;
        typedef typename base::connections_list connections_list;
        using base::m_connected_slots;
 
        signal7()
        {
            ;
        }
 
        signal7(const signal7<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, arg7_type, mt_policy>& s)
            : _signal_base7<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, arg7_type, mt_policy>(s)
        {
            ;
        }
 
        template<class desttype>
        void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
            arg2_type, arg3_type, arg4_type, arg5_type, arg6_type,
            arg7_type))
        {
            lock_block<mt_policy> lock(this);
            _connection7<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
                arg5_type, arg6_type, arg7_type, mt_policy>* conn =
                new _connection7<desttype, arg1_type, arg2_type, arg3_type,
                arg4_type, arg5_type, arg6_type, arg7_type, mt_policy>(pclass, pmemfun);
            m_connected_slots.push_back(conn);
            pclass->signal_connect(this);
        }
 
        void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
            arg5_type a5, arg6_type a6, arg7_type a7)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
 
                (*it)->emit(a1, a2, a3, a4, a5, a6, a7);
 
                it = itNext;
            }
        }
 
        void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
            arg5_type a5, arg6_type a6, arg7_type a7)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
 
                (*it)->emit(a1, a2, a3, a4, a5, a6, a7);
 
                it = itNext;
            }
        }
    };
 
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    class arg5_type, class arg6_type, class arg7_type, class arg8_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
    class signal8 : public _signal_base8<arg1_type, arg2_type, arg3_type,
        arg4_type, arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>
    {
    public:
        typedef _signal_base8<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, arg7_type, arg8_type, mt_policy> base;
        typedef typename base::connections_list connections_list;
        using base::m_connected_slots;
 
        signal8()
        {
            ;
        }
 
        signal8(const signal8<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>& s)
            : _signal_base8<arg1_type, arg2_type, arg3_type, arg4_type,
            arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>(s)
        {
            ;
        }
 
        template<class desttype>
        void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
            arg2_type, arg3_type, arg4_type, arg5_type, arg6_type,
            arg7_type, arg8_type))
        {
            lock_block<mt_policy> lock(this);
            _connection8<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
                arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* conn =
                new _connection8<desttype, arg1_type, arg2_type, arg3_type,
                arg4_type, arg5_type, arg6_type, arg7_type,
                arg8_type, mt_policy>(pclass, pmemfun);
            m_connected_slots.push_back(conn);
            pclass->signal_connect(this);
        }
 
        void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
            arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
 
                (*it)->emit(a1, a2, a3, a4, a5, a6, a7, a8);
 
                it = itNext;
            }
        }
 
        void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
            arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8)
        {
            lock_block<mt_policy> lock(this);
            typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
            typename connections_list::const_iterator itEnd = m_connected_slots.end();
 
            while(it != itEnd)
            {
                itNext = it;
                ++itNext;
 
                (*it)->emit(a1, a2, a3, a4, a5, a6, a7, a8);
 
                it = itNext;
            }
        }
    };
 
}; // namespace sigslot

 
#endif // _SIGSLOT_H__

 

最后

以上就是大力小伙为你收集整理的vs2017 编译sigslot 并测试的全部内容,希望文章能够帮你解决vs2017 编译sigslot 并测试所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(64)

评论列表共有 0 条评论

立即
投稿
返回
顶部