我是靠谱客的博主 火星上棉花糖,最近开发中收集的这篇文章主要介绍【黄啊码】MySQL入门—15、技术老大:写的SQL性能这么差,还好意思说自己五年开发经验?,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

大家好!我是黄啊码,MySQL的入门篇已经讲到第14个课程了,今天我们继续讲讲大白篇系列——数据库服务器优化流程

数据库服务器的优化步骤

当我们遇到数据库调优问题的时候,该如何思考呢?我把思考的流程整理成了下面这张图。

整个流程划分成了观察(Show status)和行动(Action)两个部分。字母 S 的部分代表观察(会使用相应的分析工具),字母 A 代表的部分是行动(对应分析可以采取的行动)。

我们可以通过观察了解数据库整体的运行状态,通过性能分析工具可以让我们了解执行慢的 SQL 都有哪些,查看具体的 SQL 执行计划,甚至是 SQL 执行中的每一步的成本代价,这样才能定位问题所在,找到了问题,再采取相应的行动。

以上图片就是数据库调优的流程思路。如果我们发现执行 SQL 时存在不规则延迟或卡顿的时候,就可以采用分析工具帮我们定位有问题的 SQL,这三种分析工具你可以理解是 SQL 调优的三个步骤:慢查询、EXPLAIN 和 SHOW PROFILING。

使用慢查询定位执行慢的 SQL

好慢询可以帮我们找到执行慢的 SQL,在使用前,我们需要先看下慢查询是否已经开启,使用下面这条命令即可:

show variables like '%slow_query_log';

我们能看到 slow_query_log=OFF,也就是说慢查询日志此时是关上的。我们可以把慢查询日志打开,注意设置变量值的时候需要使用 global,否则会报错:

set global slow_query_log='ON';

 然后我们再来查看下慢查询日志是否开启,以及慢查询日志文件的位置:

你能看到这时慢查询分析已经开启,同时文件保存在 DESKTOP-4BK02RP-slow 文件中。

接下来我们来看下慢查询的时间阈值设置,使用如下命令:

show variables like '%long_query_time%';

这里如果我们想把时间缩短,比如设置为 3 秒,可以这样设置:

set global long_query_time = 3;

我们可以使用 MySQL 自带的 mysqldumpslow 工具统计慢查询日志(这个工具是个 Perl 脚本,你需要先安装好 Perl)。

mysqldumpslow 命令的具体参数如下:

  • -s:采用 order 排序的方式,排序方式可以有以下几种。分别是 c(访问次数)、t(查询时间)、l(锁定时间)、r(返回记录)、ac(平均查询次数)、al(平均锁定时间)、ar(平均返回记录数)和 at(平均查询时间)。其中 at 为默认排序方式。
  • -t:返回前 N 条数据 。
  • -g:后面可以是正则表达式,对大小写不敏感。

比如我们想要按照查询时间排序,查看前两条 SQL 语句,这样写即可:

perl mysqldumpslow.pl -s t -t 2 "C:ProgramDataMySQLMySQL Server 8.0DataDESKTOP-4BK02RP-slow.log"

 

你能看到开启了慢查询日志,并设置了相应的慢查询时间阈值之后,只要大于这个阈值的 SQL 语句都会保存在慢查询日志中,然后我们就可以通过 mysqldumpslow 工具提取想要查找的 SQL 语句了。

如何使用 EXPLAIN 查看执行计划

定位了查询慢的 SQL 之后,我们就可以使用 EXPLAIN 工具做针对性的分析,比如我们想要了解 product_comment 和 user 表进行联查的时候所采用的的执行计划,可以使用下面这条语句:

EXPLAIN SELECT comment_id, product_id, comment_text, product_comment.user_id, user_name FROM product_comment JOIN user on product_comment.user_id = user.user_id 

EXPLAIN 可以帮助我们了解数据表的读取顺序、SELECT 子句的类型、数据表的访问类型、可使用的索引、实际使用的索引、使用的索引长度、上一个表的连接匹配条件、被优化器查询的行的数量以及额外的信息(比如是否使用了外部排序,是否使用了临时表等)等。

SQL 执行的顺序是根据 id 从大到小执行的,也就是 id 越大越先执行,当 id 相同时,从上到下执行。

数据表的访问类型所对应的 type 列是我们比较关注的信息。type 可能有以下几种情况:

在这些情况里,all 是最坏的情况,因为采用了全表扫描的方式。index 和 all 差不多,只不过 index 对索引表进行全扫描,这样做的好处是不再需要对数据进行排序,但是开销依然很大。如果我们在 extra 列中看到 Using index,说明采用了索引覆盖,也就是索引可以覆盖所需的 SELECT 字段,就不需要进行回表,这样就减少了数据查找的开销。

比如我们对 product_comment 数据表进行查询,设计了联合索引 composite_index (user_id, comment_text),然后对数据表中的 comment_id、comment_text、user_id 这三个字段进行查询,最后用 EXPLAIN 看下执行计划:

EXPLAIN SELECT comment_id, comment_text, user_id FROM product_comment 


你能看到这里同时使用到了两个索引,分别是主键和 user_id,采用的数据表访问类型是 index_merge,通过 union 的方式对两个索引检索的数据进行合并。

ref 类型表示采用了非唯一索引,或者是唯一索引的非唯一性前缀。比如我们想要对 user_id=500000 的评论进行查询,使用 EXPLAIN 查看执行计划:

EXPLAIN SELECT comment_id, comment_text, user_id FROM product_comment WHERE user_id = 500000 

 


这里 user_id 为普通索引(因为 user_id 在商品评论表中可能是重复的),因此采用的访问类型是 ref,同时在 ref 列中显示 const,表示连接匹配条件是常量,用于索引列的查找。

eq_ref 类型是使用主键或唯一索引时产生的访问方式,通常使用在多表联查中。假设我们对 product_comment 表和 usre 表进行联查,关联条件是两张表的 user_id 相等,使用 EXPLAIN 进行执行计划查看:

EXPLAIN SELECT * FROM product_comment JOIN user WHERE product_comment.user_id = user.user_id 

 

const 类型表示我们使用了主键或者唯一索引(所有的部分)与常量值进行比较,比如我们想要查看 comment_id=500000,查看执行计划:

EXPLAIN SELECT comment_id, comment_text, user_id FROM product_comment WHERE comment_id = 500000 

 

需要说明的是 const 类型和 eq_ref 都使用了主键或唯一索引,不过这两个类型有所区别,const 是与常量进行比较,查询效率会更快,而 eq_ref 通常用于多表联查中。

system 类型一般用于 MyISAM 或 Memory 表,属于 const 类型的特例,当表只有一行时连接类型为 system(我在 GitHub 上上传了 test_myisam 数据表,该数据表只有一行记录,

EXPLAIN SELECT * FROM test_myisam

 

你能看到除了 all 类型外,其他类型都可以使用到索引,但是不同的连接方式的效率也会有所不同,效率从低到高依次为 all < index < range < index_merge < ref < eq_ref < const/system。我们在查看执行计划的时候,通常希望执行计划至少可以使用到 range 级别以上的连接方式,如果只使用到了 all 或者 index 连接方式,我们可以从 SQL 语句和索引设计的角度上进行改进。

使用 SHOW PROFILE 查看 SQL 的具体执行成本

SHOW PROFILE 相比 EXPLAIN 能看到更进一步的执行解析,包括 SQL 都做了什么、所花费的时间等。默认情况下,profiling 是关闭的,我们可以在会话级别开启这个功能。

show variables like 'profiling';

 

通过设置 profiling='ON’来开启 show profile:

set profiling = 'ON';

 

 我们可以看下当前会话都有哪些 profiles,使用下面这条命令:

show profiles;

你能看到当前会话一共有 2 个查询,如果我们想要查看上一个查询的开销,可以使用:

show profile;

 我们也可以查看指定的 Query ID 的开销,比如 show profile for query 2 查询结果是一样的。在 SHOW PROFILE 中我们可以查看不同部分的开销,比如 cpu、block.io 等:

通过上面的结果,我们可以弄清楚每一步骤的耗时,以及在不同部分,比如 CPU、block.io 的执行时间,这样我们就可以判断出来 SQL 到底慢在哪里。

不过 SHOW PROFILE 命令将被弃用,我们可以从 information_schema 中的 profiling 数据表进行查看。

好了,今天的课程学到这里,有问题的留个言,别忘了一键三连,下次我们还会再见!

我是黄啊码,码字的码,退。。。退。。。退。。。朝! 

最后

以上就是火星上棉花糖为你收集整理的【黄啊码】MySQL入门—15、技术老大:写的SQL性能这么差,还好意思说自己五年开发经验?的全部内容,希望文章能够帮你解决【黄啊码】MySQL入门—15、技术老大:写的SQL性能这么差,还好意思说自己五年开发经验?所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(56)

评论列表共有 0 条评论

立即
投稿
返回
顶部