概述
一、sqoop安装
安装sqoop的前提是已经具备java和hadoop的环境
1、下载并解压
最新版下载地址http://ftp.wayne.edu/apache/sqoop/1.4.6/
2、修改配置文件
$ cd sqoop/conf(默认将sqoop解压到当前目录下)
$ mv sqoop-env-template.sh sqoop-env.sh
打开sqoop-env.sh并编辑下面几行:
export HADOOP_COMMON_HOME=/home/hadoop/apps/hadoop-2.6.4/(可用which (hadoop)命令查看位置)
export HADOOP_MAPRED_HOME=/home/hadoop/apps/hadoop-2.6.4/export HIVE_HOME=/home/hadoop/apps/hive
3、加入mysql的jdbc驱动包
cp ~/apps/hive/lib/mysql-connector-java-5.1.28.jar /sqoop/lib/(在之前的hive安装中已经导入过mysql驱动包)
若无,则可以将驱动包上传至虚拟机,拷入至sqoop/lib中
4、验证启动
$ cd sqoop/bin
$ sqoop-version
预期的输出:
15/12/17 14:52:32 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
Sqoop 1.4.6 git commit id 5b34accaca7de251fc91161733f906af2eddbe83
Compiled by abe on Fri Aug 1 11:19:26 PDT 2015
到这里,整个Sqoop安装工作完成。
5、使用
cd sqoop/
使用bin/sqoop help 可查看其中操作指令
Available commands:
codegen Generate code to interact with database records
create-hive-table Import a table definition into Hive
eval Evaluate a SQL statement and display the results
export Export an HDFS directory to a database table
help List available commands
import Import a tablefroma database to HDFS
import-all-tables Import tables froma database to HDFS
import-mainframe Import datasets froma mainframe server to HDFS
job Work with saved jobs
list-databases List available databases on a server
list-tables List available tables ina database
merge Merge results of incremental imports
metastore Run a standalone Sqoop metastore
version Display version information
举例:将mysql数据库中某表数据导入HDFS中,由于前边的hadoop配置,最终数据会导向HDFS中的/usr/hadoop/文件夹中:
$bin/sqoop import --connect jdbc:mysql://min1:3306/mysql 数据库链接信息
--username root --password 123456--table db 选择导出哪张表数据--m 1
系统会运行mapreduce程序,在min1:8088以及min1:50070中可看到运行过程,如果成功执行,那么会得到下面的输出。
9/03/18 16:53:53 INFO mapreduce.JobSubmitter: Submitting tokens forjob: job_1552575186473_003019/03/18 16:53:54INFO impl.YarnClientImpl: Submitted application application_1552575186473_003019/03/18 16:53:54 INFO mapreduce.Job: The url to track the job: http://min1:8088/proxy/application_1552575186473_0030/
19/03/18 16:53:54INFO mapreduce.Job: Running job: job_1552575186473_003019/03/18 16:54:11 INFO mapreduce.Job: Job job_1552575186473_0030 running in uber mode : false
19/03/18 16:54:11 INFO mapreduce.Job: map 0% reduce 0%
19/03/18 16:54:32 INFO mapreduce.Job: map 100% reduce 0%
19/03/18 16:54:33INFO mapreduce.Job: Job job_1552575186473_0030 completed successfully19/03/18 16:54:33 INFO mapreduce.Job: Counters: 30File System Counters
FILE: Number of bytes read=0FILE: Number of bytes written=124571FILE: Number of read operations=0FILE: Number of large read operations=0FILE: Number of write operations=0HDFS: Number of bytes read=87HDFS: Number of bytes written=95HDFS: Number of read operations=4HDFS: Number of large read operations=0HDFS: Number of write operations=2Job Counters
Launched map tasks=1Other local map tasks=1Total time spent by all mapsin occupied slots (ms)=16705Total time spent by all reducesin occupied slots (ms)=0Total time spent by all map tasks (ms)=16705Total vcore-milliseconds taken by all map tasks=16705Total megabyte-milliseconds taken by all map tasks=17105920Map-Reduce Framework
Map input records=2Map output records=2Input split bytes=87Spilled Records=0Failed Shuffles=0Merged Map outputs=0GC time elapsed (ms)=110CPU time spent (ms)=2980Physical memory (bytes) snapshot=103735296Virtual memory (bytes) snapshot=2064986112Total committed heap usage (bytes)=30474240File Input Format Counters
Bytes Read=0File Output Format Counters
Bytes Written=95
19/03/18 16:54:33 INFO mapreduce.ImportJobBase: Transferred 95 bytes in 52.9843 seconds (1.793 bytes/sec)19/03/18 16:54:33 INFO mapreduce.ImportJobBase: Retrieved 2 records.
最后
以上就是大方时光为你收集整理的mysql的sqoop组件_sqoop组件的安装与使用的全部内容,希望文章能够帮你解决mysql的sqoop组件_sqoop组件的安装与使用所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复