概述
I try to run this code:
outputs, states = rnn.rnn(lstm_cell, x, initial_state=initial_state, sequence_length=real_length)
tensor_shape = outputs.get_shape()
for step_index in range(tensor_shape[0]):
word_index = self.x[:, step_index]
word_index = tf.reshape(word_index, [-1,1])
index_weight = tf.gather(word_weight, word_index)
outputs[step_index, :, :]=tf.mul(outputs[step_index, :, :] , index_weight)
But I get error on last line: TypeError: 'Tensor' object does not support item assignment
It seems I can not assign to tensor, how can I fix it?
In general, a TensorFlow tensor object is not assignable*, so you cannot use it on the left-hand side of an assignment.
The easiest way to do what you're trying to do is to build a Python list of tensors, and tf.stack()
them together at the end of the loop:
outputs, states = rnn.rnn(lstm_cell, x, initial_state=initial_state,
sequence_length=real_length)
output_list = []
tensor_shape = outputs.get_shape()
for step_index in range(tensor_shape[0]):
word_index = self.x[:, step_index]
word_index = tf.reshape(word_index, [-1,1])
index_weight = tf.gather(word_weight, word_index)
output_list.append(tf.mul(outputs[step_index, :, :] , index_weight))
outputs = tf.stack(output_list)
* With the exception of tf.Variable
objects, using the Variable.assign()
etc. methods. However, rnn.rnn()
likely returns a tf.Tensor
object that does not support this method.
最后
以上就是潇洒雨为你收集整理的[work]TypeError: 'Tensor' object does not support item assignment in TensorFlow的全部内容,希望文章能够帮你解决[work]TypeError: 'Tensor' object does not support item assignment in TensorFlow所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复