概述
目录
支持向量机SVM的详细原理
SVM的定义
SVM理论
Libsvm工具箱详解
简介
参数说明
易错及常见问题
SVM应用实例,基于SVM的面部表情分类预测
代码
结果分析
展望
支持向量机SVM的详细原理
SVM的定义
支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM的的学习算法就是求解凸二次规划的最优化算法。
(1)支持向量机(Support Vector Machine, SVM)是一种对数据进行二分类的广义线性分类器,其分类边界是对学习样本求解的最大间隔超平面。
(2)SVM使用铰链损失函数计算经验风险并在求解系统中加入了正则化项以优化结构风险,是一个具有稀疏性和稳健性的分类器 。
(3)SVM可以通过引入核函数进行非线性分类。
SVM理论
1,线性可分性
2,损失函数
最后
以上就是潇洒悟空为你收集整理的基于支持向量机SVM的面部表情分类预测目录支持向量机SVM的详细原理的全部内容,希望文章能够帮你解决基于支持向量机SVM的面部表情分类预测目录支持向量机SVM的详细原理所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复