题目来源
63. 不同路径 II
递归
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21class Solution { public int uniquePathsWithObstacles(int[][] obstacleGrid) { int row = obstacleGrid.length-1; int col = obstacleGrid[0].length-1; return process(row,col,0,0,obstacleGrid); } private int process(int row ,int col,int i,int j,int[][] obstacleGrid){ if(i>row || j>col){ return 0; } if(obstacleGrid[i][j]==1){ return 0; } if(i == row && j==col){ return 1; } return process(row,col,i+1,j,obstacleGrid) + process(row,col,i,j+1,obstacleGrid); } }
动态规划
动规五部曲:
- 1.确定dp数组(dp table)以及下标的含义
dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。
- 2.确定递推公式
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。
因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。
复制代码
1
2dp[i][j] = obstacleGrid[i][j]==0?dp[i-1][j]+dp[i][j-1]:0;
- 3.dp数组如何初始化
因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。
但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。
复制代码
1
2
3
4
5
6
7for(int i = 0;i<row && obstacleGrid[i][0]==0;i++){ dp[i][0] = 1; } for(int j = 0;j<col && obstacleGrid[0][j]==0;j++){ dp[0][j] = 1; }
注意代码里for循环的终止条件,一旦遇到obstacleGrid[i][0] == 1的情况就停止dp[i][0]的赋值1的操作,dp[0][j]同理
- 4.确定遍历顺序
从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。
复制代码
1
2
3
4
5
6for(int i = 1;i<row;i++){ for(int j = 1;j<col;j++){ dp[i][j] = obstacleGrid[i][j]==0?dp[i-1][j]+dp[i][j-1]:0; } }
- 5.举例推导dp数组
对应的dp table 如图:
完整代码
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20class Solution { public int uniquePathsWithObstacles(int[][] obstacleGrid) { int row = obstacleGrid.length; int col = obstacleGrid[0].length; int[][] dp = new int[row][col]; for(int i = 0;i<row && obstacleGrid[i][0]==0;i++){ dp[i][0] = 1; } for(int j = 0;j<col && obstacleGrid[0][j]==0;j++){ dp[0][j] = 1; } for(int i = 1;i<row;i++){ for(int j = 1;j<col;j++){ dp[i][j] = obstacleGrid[i][j]==0?dp[i-1][j]+dp[i][j-1]:0; } } return dp[row-1][col-1]; } }
最后
以上就是健忘画笔最近收集整理的关于LeetCode-63. 不同路径 II的全部内容,更多相关LeetCode-63.内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复