概述
Exercise 11.1: Plotting a function
Plot the function f(x)=sin2(x−2)e−x2 f ( x ) = s i n 2 ( x − 2 ) e − x 2 over the interval [0, 2]. Add proper axis labels, a title, etc.
代码:
import numpy as np
import matplotlib.pyplot as plt
import math
x = np.linspace(0, 2, 1000)
y = [math.sin(i-2)**2 * math.exp(-i**2) for i in x]
plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('y')
plt.title('y = $sin^2(x-2){e^{-x^2}}$')
plt.show()
运行效果:
Exercise 11.2: Data
Create a data matrix
X
X
with 20 observations of 10 variables. Generate a vector with parameters Then generate the response vector
y=Xb+z
y
=
X
b
+
z
where
z
z
is a vector with standard normally distributed variables.
Now (by only using and
X
X
), find an estimator for , by solving
b^=argminb||Xb−y||2
b
^
=
arg
min
b
|
|
X
b
−
y
|
|
2
. Plot the true parameters
b
b
and estimated parameters . See Figure 1 for an example plot.
一开始这题我是不会的,后来看到网上的资料说这道题可以用scipy.optimize库中的minimize函数。minimize函数进行的是多变量的最小化,原型为scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None),fun是需要进行最小化的函数,x0是初步猜测,这里一开始猜测为0向量,arg是额外参数。
代码:
import numpy as np
import matplotlib.pyplot as plt
import scipy as sp
from scipy.optimize import minimize
def error(b0, X, y):
b0 = np.reshape(b0, (10, 1))
return np.linalg.norm(np.dot(X, b0) - y)
n = 20
m = 10
X = np.random.randint(1, 4, (n, m))
X = np.mat(X)
b = np.random.randint(-2, 2,(1, m))
b_vec = (np.mat(b)).T
z = np.random.randn(1, n)
z_vec = (np.mat(z)).T
y_vec = np.dot(X, b_vec) + z_vec
y = np.array(y_vec)
b0 = np.zeros((10, 1))
Para = minimize(error, b0, args=(X, y))
b_ = Para.x
x1 = np.linspace(0, 9, 10)
fig = plt.figure()
p1 = plt.scatter(x1, b, marker='x', color='r')
p2 = plt.scatter(x1, b_, marker='o', color='b')
plt.xlim(0, 10)
plt.ylim(-3, 3)
plt.xlabel('index')
plt.ylabel('value')
plt.legend([p1, p2], ['True coefficents', 'Estimated coefficients'])
plt.show()
运行效果:
Exercise 11.3: Histogram and density estimation
Generate a vector z z of 10000 observations from your favorite exotic distribution. Then make a plot that shows a histogram of (with 25 bins), along with an estimate for the density, using a Gaussian kernel density estimator (see scipy.stats). See Figure 2 for an example plot.
代码:
import numpy as np
import matplotlib.pyplot as plt
import seaborn
x = np.random.randn(10000)
plt.hist(x, 25, normed=1)
seaborn.kdeplot(x)
plt.show()
运行效果:
最后
以上就是矮小冰淇淋为你收集整理的Python Matplotlib习题Exercise 11.1: Plotting a functionExercise 11.2: DataExercise 11.3: Histogram and density estimation的全部内容,希望文章能够帮你解决Python Matplotlib习题Exercise 11.1: Plotting a functionExercise 11.2: DataExercise 11.3: Histogram and density estimation所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复