我是靠谱客的博主 外向便当,最近开发中收集的这篇文章主要介绍TensorFlow实战:Gans 学习明星人脸,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

EBGAN

# -*- coding: utf-8 -*-
"""
Energy Based Generative Adversarial Networks (EBGAN)
python version :2.7
"""
import os
import random
import numpy as np
import tensorflow as tf
from PIL import Image
#import cv2
import scipy.misc as misc

CELEBA_DATE_DIR= 'img_align_celeba'

train_images = []
for image_filename in os.listdir(CELEBA_DATE_DIR):
    if image_filename.endswith('.jpg'):
        train_images.append(os.path.join(CELEBA_DATE_DIR, image_filename))

#print train_images

random.shuffle(train_images)

batch_size = 64
num_batch = len(train_images) // batch_size


# 图像大小和channel
IMAGE_SIZE = 128
IMAGE_CHANNEL = 3

def get_next_batch(pointer):
    image_batch = []
    images = train_images[pointer*batch_size:(pointer+1)*batch_size]
    for img in images:
        arr = Image.open(img)
        arr = arr.resize((IMAGE_SIZE, IMAGE_SIZE))
        arr = np.array(arr)
        arr = arr.astype('float32') / 127.5 - 1
        #image = cv2.imread(img)
        #image = cv2.resize(image, (IMAGE_SIZE, IMAGE_SIZE))
        #image = image.astype('float32') / 127.5 - 1
        image_batch.append(arr)
    return image_batch

# noise
z_dim = 100
noise = tf.placeholder(tf.float32, [None, z_dim], name='noise')

X = tf.placeholder(tf.float32, [batch_size, IMAGE_SIZE, IMAGE_SIZE, IMAGE_CHANNEL], name='X')
# 是否在训练阶段
train_phase = tf.placeholder(tf.bool)

# http://stackoverflow.com/a/34634291/2267819
def batch_norm(x, beta, gamma, phase_train, scope='bn', decay=0.9, eps=1e-5):
    with tf.variable_scope(scope):
        #beta = tf.get_variable(name='beta', shape=[n_out], initializer=tf.constant_initializer(0.0), trainable=True)
        #gamma = tf.get_variable(name='gamma', shape=[n_out], initializer=tf.random_normal_initializer(1.0, stddev), trainable=True)
        batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments')
        ema = tf.train.ExponentialMovingAverage(decay=decay)

        def mean_var_with_update():
            ema_apply_op = ema.apply([batch_mean, batch_var])
            with tf.control_dependencies([ema_apply_op]):
                return tf.identity(batch_mean), tf.identity(batch_var)

        mean, var = tf.cond(phase_train, mean_var_with_update, lambda: (ema.average(batch_mean), ema.average(batch_var)))
        normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, eps)
    return normed

# 重用变量出了点问题, 先用dict
generator_variables_dict = {
    "W_1": tf.Variable(tf.truncated_normal([z_dim, 2 * IMAGE_SIZE * IMAGE_SIZE], stddev=0.02), name='Generator/W_1'),
    "b_1": tf.Variable(tf.constant(0.0, shape=[2 * IMAGE_SIZE * IMAGE_SIZE]), name='Generator/b_1'),
    'beta_1': tf.Variable(tf.constant(0.0, shape=[512]), name='Generator/beta_1'),
    'gamma_1': tf.Variable(tf.random_normal(shape=[512], mean=1.0, stddev=0.02), name='Generator/gamma_1'),

    "W_2": tf.Variable(tf.truncated_normal([5, 5, 256, 512], stddev=0.02), name='Generator/W_2'),
    "b_2": tf.Variable(tf.constant(0.0, shape=[256]), name='Generator/b_2'),
    'beta_2': tf.Variable(tf.constant(0.0, shape=[256]), name='Generator/beta_2'),
    'gamma_2': tf.Variable(tf.random_normal(shape=[256], mean=1.0, stddev=0.02), name='Generator/gamma_2'),

    "W_3": tf.Variable(tf.truncated_normal([5, 5, 128, 256], stddev=0.02), name='Generator/W_3'),
    "b_3": tf.Variable(tf.constant(0.0, shape=[128]), name='Generator/b_3'),
    'beta_3': tf.Variable(tf.constant(0.0, shape=[128]), name='Generator/beta_3'),
    'gamma_3': tf.Variable(tf.random_normal(shape=[128], mean=1.0, stddev=0.02), name='Generator/gamma_3'),

    "W_4": tf.Variable(tf.truncated_normal([5, 5, 64, 128], stddev=0.02), name='Generator/W_4'),
    "b_4": tf.Variable(tf.constant(0.0, shape=[64]), name='Generator/b_4'),
    'beta_4': tf.Variable(tf.constant(0.0, shape=[64]), name='Generator/beta_4'),
    'gamma_4': tf.Variable(tf.random_normal(shape=[64], mean=1.0, stddev=0.02), name='Generator/gamma_4'),

    "W_5": tf.Variable(tf.truncated_normal([5, 5, IMAGE_CHANNEL, 64], stddev=0.02), name='Generator/W_5'),
    "b_5": tf.Variable(tf.constant(0.0, shape=[IMAGE_CHANNEL]), name='Generator/b_5')
}
# Generator
def generator(noise):
    with tf.variable_scope("Generator"):
        out_1 = tf.matmul(noise, generator_variables_dict["W_1"]) + generator_variables_dict['b_1']
        out_1 = tf.reshape(out_1, [-1, IMAGE_SIZE//16, IMAGE_SIZE//16, 512])
        out_1 = batch_norm(out_1, generator_variables_dict["beta_1"], generator_variables_dict["gamma_1"], train_phase, scope='bn_1')
        out_1 = tf.nn.relu(out_1, name='relu_1')

        out_2 = tf.nn.conv2d_transpose(out_1, generator_variables_dict['W_2'],  output_shape=tf.stack([tf.shape(out_1)[0], IMAGE_SIZE//8, IMAGE_SIZE//8, 256]), strides=[1, 2, 2, 1], padding='SAME')
        out_2 = tf.nn.bias_add(out_2, generator_variables_dict['b_2'])
        out_2 = batch_norm(out_2, generator_variables_dict["beta_2"], generator_variables_dict["gamma_2"], train_phase, scope='bn_2')
        out_2 = tf.nn.relu(out_2, name='relu_2')

        out_3 = tf.nn.conv2d_transpose(out_2, generator_variables_dict['W_3'],  output_shape=tf.stack([tf.shape(out_2)[0], IMAGE_SIZE//4, IMAGE_SIZE//4, 128]), strides=[1, 2, 2, 1], padding='SAME')
        out_3 = tf.nn.bias_add(out_3, generator_variables_dict['b_3'])
        out_3 = batch_norm(out_3, generator_variables_dict["beta_3"], generator_variables_dict["gamma_3"], train_phase, scope='bn_3')
        out_3 = tf.nn.relu(out_3, name='relu_3')

        out_4 = tf.nn.conv2d_transpose(out_3, generator_variables_dict['W_4'],  output_shape=tf.stack([tf.shape(out_3)[0], IMAGE_SIZE//2, IMAGE_SIZE//2, 64]), strides=[1, 2, 2, 1], padding='SAME')
        out_4 = tf.nn.bias_add(out_4, generator_variables_dict['b_4'])
        out_4 = batch_norm(out_4, generator_variables_dict["beta_4"], generator_variables_dict["gamma_4"], train_phase, scope='bn_4')
        out_4 = tf.nn.relu(out_4, name='relu_4')

        out_5 = tf.nn.conv2d_transpose(out_4, generator_variables_dict['W_5'],  output_shape=tf.stack([tf.shape(out_4)[0], IMAGE_SIZE, IMAGE_SIZE, IMAGE_CHANNEL]), strides=[1, 2, 2, 1], padding='SAME')
        out_5 = tf.nn.bias_add(out_5, generator_variables_dict['b_5'])
        out_5 = tf.nn.tanh(out_5, name='tanh_5')

        return out_5

discriminator_variables_dict = {
    "W_1": tf.Variable(tf.truncated_normal([4, 4, IMAGE_CHANNEL, 32], stddev=0.002), name='Discriminator/W_1'),
    "b_1": tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/b_1'),
    'beta_1': tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/beta_1'),
    'gamma_1': tf.Variable(tf.random_normal(shape=[32], mean=1.0, stddev=0.02), name='Discriminator/gamma_1'),

    "W_2": tf.Variable(tf.truncated_normal([4, 4, 32, 64], stddev=0.002), name='Discriminator/W_2'),
    "b_2": tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/b_2'),
    'beta_2': tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/beta_2'),
    'gamma_2': tf.Variable(tf.random_normal(shape=[64], mean=1.0, stddev=0.02), name='Discriminator/gamma_2'),

    "W_3": tf.Variable(tf.truncated_normal([4, 4, 64, 128], stddev=0.002), name='Discriminator/W_3'),
    "b_3": tf.Variable(tf.constant(0.0, shape=[128]), name='Discriminator/b_3'),
    'beta_3': tf.Variable(tf.constant(0.0, shape=[128]), name='Discriminator/beta_3'),
    'gamma_3': tf.Variable(tf.random_normal(shape=[128], mean=1.0, stddev=0.02), name='Discriminator/gamma_3'),

    "W_4": tf.Variable(tf.truncated_normal([4, 4, 64, 128], stddev=0.002), name='Discriminator/W_4'),
    "b_4": tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/b_4'),
    'beta_4': tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/beta_4'),
    'gamma_4': tf.Variable(tf.random_normal(shape=[64], mean=1.0, stddev=0.02), name='Discriminator/gamma_4'),

    "W_5": tf.Variable(tf.truncated_normal([4, 4, 32, 64], stddev=0.002), name='Discriminator/W_5'),
    "b_5": tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/b_5'),
    'beta_5': tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/beta_5'),
    'gamma_5': tf.Variable(tf.random_normal(shape=[32], mean=1.0, stddev=0.02), name='Discriminator/gamma_5'),

    "W_6": tf.Variable(tf.truncated_normal([4, 4, 3, 32], stddev=0.002), name='Discriminator/W_6'),
    "b_6": tf.Variable(tf.constant(0.0, shape=[3]), name='Discriminator/b_6')
}
# Discriminator
def discriminator(input_images):
    with tf.variable_scope("Discriminator"):
        # Encoder
        out_1 = tf.nn.conv2d(input_images, discriminator_variables_dict['W_1'], strides=[1, 2, 2, 1], padding='SAME')
        out_1 = tf.nn.bias_add(out_1, discriminator_variables_dict['b_1'])
        out_1 = batch_norm(out_1, discriminator_variables_dict['beta_1'], discriminator_variables_dict['gamma_1'], train_phase, scope='bn_1')
        out_1 = tf.maximum(0.2 * out_1, out_1, 'leaky_relu_1')

        out_2 = tf.nn.conv2d(out_1, discriminator_variables_dict['W_2'], strides=[1, 2, 2, 1], padding='SAME')
        out_2 = tf.nn.bias_add(out_2, discriminator_variables_dict['b_2'])
        out_2 = batch_norm(out_2, discriminator_variables_dict['beta_2'], discriminator_variables_dict['gamma_2'], train_phase, scope='bn_2')
        out_2 = tf.maximum(0.2 * out_2, out_2, 'leaky_relu_2')

        out_3 = tf.nn.conv2d(out_2, discriminator_variables_dict['W_3'], strides=[1, 2, 2, 1], padding='SAME')
        out_3 = tf.nn.bias_add(out_3, discriminator_variables_dict['b_3'])
        out_3 = batch_norm(out_3, discriminator_variables_dict['beta_3'], discriminator_variables_dict['gamma_3'], train_phase, scope='bn_3')
        out_3 = tf.maximum(0.2 * out_3, out_3, 'leaky_relu_3')
        encode = tf.reshape(out_3, [-1, 2*IMAGE_SIZE*IMAGE_SIZE])

        # Decoder
        out_3 = tf.reshape(encode, [-1, IMAGE_SIZE//8, IMAGE_SIZE//8, 128])

        out_4 = tf.nn.conv2d_transpose(out_3, discriminator_variables_dict['W_4'],  output_shape=tf.stack([tf.shape(out_3)[0], IMAGE_SIZE//4, IMAGE_SIZE//4, 64]), strides=[1, 2, 2, 1], padding='SAME')
        out_4 = tf.nn.bias_add(out_4, discriminator_variables_dict['b_4'])
        out_4 = batch_norm(out_4, discriminator_variables_dict['beta_4'], discriminator_variables_dict['gamma_4'], train_phase, scope='bn_4')
        out_4 = tf.maximum(0.2 * out_4, out_4, 'leaky_relu_4')

        out_5 = tf.nn.conv2d_transpose(out_4, discriminator_variables_dict['W_5'],  output_shape=tf.stack([tf.shape(out_4)[0], IMAGE_SIZE//2, IMAGE_SIZE//2, 32]), strides=[1, 2, 2, 1], padding='SAME')
        out_5 = tf.nn.bias_add(out_5, discriminator_variables_dict['b_5'])
        out_5 = batch_norm(out_5, discriminator_variables_dict['beta_5'], discriminator_variables_dict['gamma_5'], train_phase, scope='bn_5')
        out_5 = tf.maximum(0.2 * out_5, out_5, 'leaky_relu_5')

        out_6 = tf.nn.conv2d_transpose(out_5, discriminator_variables_dict['W_6'],  output_shape=tf.stack([tf.shape(out_5)[0], IMAGE_SIZE, IMAGE_SIZE, 3]), strides=[1, 2, 2, 1], padding='SAME')
        out_6 = tf.nn.bias_add(out_6, discriminator_variables_dict['b_6'])
        decoded = tf.nn.tanh(out_6, name="tanh_6")

        return encode, decoded

# mean squared errors
_, real_decoded = discriminator(X)
real_loss = tf.sqrt(2 * tf.nn.l2_loss(real_decoded - X)) / batch_size

fake_image = generator(noise)
_, fake_decoded = discriminator(fake_image)
fake_loss = tf.sqrt(2 * tf.nn.l2_loss(fake_decoded - fake_image)) / batch_size

# loss
# D_loss = real_loss + tf.maximum(1 - fake_loss, 0)
margin = 20
D_loss = margin - fake_loss + real_loss
G_loss = fake_loss # no pt

def optimizer(loss, d_or_g):
    optim = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.5)
    #print([v.name for v in tf.trainable_variables() if v.name.startswith(d_or_g)])
    var_list = [v for v in tf.trainable_variables() if v.name.startswith(d_or_g)]
    gradient = optim.compute_gradients(loss, var_list=var_list)
    return optim.apply_gradients(gradient)

train_op_G = optimizer(G_loss, 'Generator')
train_op_D = optimizer(D_loss, 'Discriminator')

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer(), feed_dict={train_phase: True})
    saver = tf.train.Saver()

    # 恢复前一次训练
    ckpt = tf.train.get_checkpoint_state('.')
    if ckpt != None:
        print(ckpt.model_checkpoint_path)
        saver.restore(sess, ckpt.model_checkpoint_path)
    else:
        print("没找到模型")

    step = 0
    for i in range(40):
        for j in range(num_batch):
            batch_noise = np.random.uniform(-1.0, 1.0, size=[batch_size, z_dim]).astype(np.float32)

            d_loss, _ = sess.run([D_loss, train_op_D], feed_dict={noise: batch_noise, X: get_next_batch(j), train_phase: True})
            g_loss, _ = sess.run([G_loss, train_op_G], feed_dict={noise: batch_noise, X: get_next_batch(j), train_phase: True})
            g_loss, _ = sess.run([G_loss, train_op_G], feed_dict={noise: batch_noise, X: get_next_batch(j), train_phase: True})

            print(step, d_loss, g_loss)

            # 保存模型并生成图像
            if step % 100 == 0:
                saver.save(sess, "celeba.model", global_step=step)

                test_noise = np.random.uniform(-1.0, 1.0, size=(5, z_dim)).astype(np.float32)
                images = sess.run(fake_image, feed_dict={noise: test_noise, train_phase: False})

                for k in range(5):
                    image = images[k, :, :, :]
                    image += 1
                    image *= 127.5
                    image = np.clip(image, 0, 255).astype(np.uint8)
                    image = np.reshape(image, (IMAGE_SIZE, IMAGE_SIZE, -1))
                    misc.imsave('fake_image' + str(step) + str(k) + '.jpg', image)

            step += 1

2、生成图片效果

iterimage1image2
1000-2000这里写图片描述这里写图片描述
4000-6000这里写图片描述这里写图片描述
8000-10K这里写图片描述这里写图片描述
30K-50K这里写图片描述这里写图片描述
60K-70K这里写图片描述这里写图片描述
9K-10K这里写图片描述这里写图片描述

最后

以上就是外向便当为你收集整理的TensorFlow实战:Gans 学习明星人脸的全部内容,希望文章能够帮你解决TensorFlow实战:Gans 学习明星人脸所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(67)

评论列表共有 0 条评论

立即
投稿
返回
顶部