概述
EBGAN
# -*- coding: utf-8 -*-
"""
Energy Based Generative Adversarial Networks (EBGAN)
python version :2.7
"""
import os
import random
import numpy as np
import tensorflow as tf
from PIL import Image
#import cv2
import scipy.misc as misc
CELEBA_DATE_DIR= 'img_align_celeba'
train_images = []
for image_filename in os.listdir(CELEBA_DATE_DIR):
if image_filename.endswith('.jpg'):
train_images.append(os.path.join(CELEBA_DATE_DIR, image_filename))
#print train_images
random.shuffle(train_images)
batch_size = 64
num_batch = len(train_images) // batch_size
# 图像大小和channel
IMAGE_SIZE = 128
IMAGE_CHANNEL = 3
def get_next_batch(pointer):
image_batch = []
images = train_images[pointer*batch_size:(pointer+1)*batch_size]
for img in images:
arr = Image.open(img)
arr = arr.resize((IMAGE_SIZE, IMAGE_SIZE))
arr = np.array(arr)
arr = arr.astype('float32') / 127.5 - 1
#image = cv2.imread(img)
#image = cv2.resize(image, (IMAGE_SIZE, IMAGE_SIZE))
#image = image.astype('float32') / 127.5 - 1
image_batch.append(arr)
return image_batch
# noise
z_dim = 100
noise = tf.placeholder(tf.float32, [None, z_dim], name='noise')
X = tf.placeholder(tf.float32, [batch_size, IMAGE_SIZE, IMAGE_SIZE, IMAGE_CHANNEL], name='X')
# 是否在训练阶段
train_phase = tf.placeholder(tf.bool)
# http://stackoverflow.com/a/34634291/2267819
def batch_norm(x, beta, gamma, phase_train, scope='bn', decay=0.9, eps=1e-5):
with tf.variable_scope(scope):
#beta = tf.get_variable(name='beta', shape=[n_out], initializer=tf.constant_initializer(0.0), trainable=True)
#gamma = tf.get_variable(name='gamma', shape=[n_out], initializer=tf.random_normal_initializer(1.0, stddev), trainable=True)
batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=decay)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(phase_train, mean_var_with_update, lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, eps)
return normed
# 重用变量出了点问题, 先用dict
generator_variables_dict = {
"W_1": tf.Variable(tf.truncated_normal([z_dim, 2 * IMAGE_SIZE * IMAGE_SIZE], stddev=0.02), name='Generator/W_1'),
"b_1": tf.Variable(tf.constant(0.0, shape=[2 * IMAGE_SIZE * IMAGE_SIZE]), name='Generator/b_1'),
'beta_1': tf.Variable(tf.constant(0.0, shape=[512]), name='Generator/beta_1'),
'gamma_1': tf.Variable(tf.random_normal(shape=[512], mean=1.0, stddev=0.02), name='Generator/gamma_1'),
"W_2": tf.Variable(tf.truncated_normal([5, 5, 256, 512], stddev=0.02), name='Generator/W_2'),
"b_2": tf.Variable(tf.constant(0.0, shape=[256]), name='Generator/b_2'),
'beta_2': tf.Variable(tf.constant(0.0, shape=[256]), name='Generator/beta_2'),
'gamma_2': tf.Variable(tf.random_normal(shape=[256], mean=1.0, stddev=0.02), name='Generator/gamma_2'),
"W_3": tf.Variable(tf.truncated_normal([5, 5, 128, 256], stddev=0.02), name='Generator/W_3'),
"b_3": tf.Variable(tf.constant(0.0, shape=[128]), name='Generator/b_3'),
'beta_3': tf.Variable(tf.constant(0.0, shape=[128]), name='Generator/beta_3'),
'gamma_3': tf.Variable(tf.random_normal(shape=[128], mean=1.0, stddev=0.02), name='Generator/gamma_3'),
"W_4": tf.Variable(tf.truncated_normal([5, 5, 64, 128], stddev=0.02), name='Generator/W_4'),
"b_4": tf.Variable(tf.constant(0.0, shape=[64]), name='Generator/b_4'),
'beta_4': tf.Variable(tf.constant(0.0, shape=[64]), name='Generator/beta_4'),
'gamma_4': tf.Variable(tf.random_normal(shape=[64], mean=1.0, stddev=0.02), name='Generator/gamma_4'),
"W_5": tf.Variable(tf.truncated_normal([5, 5, IMAGE_CHANNEL, 64], stddev=0.02), name='Generator/W_5'),
"b_5": tf.Variable(tf.constant(0.0, shape=[IMAGE_CHANNEL]), name='Generator/b_5')
}
# Generator
def generator(noise):
with tf.variable_scope("Generator"):
out_1 = tf.matmul(noise, generator_variables_dict["W_1"]) + generator_variables_dict['b_1']
out_1 = tf.reshape(out_1, [-1, IMAGE_SIZE//16, IMAGE_SIZE//16, 512])
out_1 = batch_norm(out_1, generator_variables_dict["beta_1"], generator_variables_dict["gamma_1"], train_phase, scope='bn_1')
out_1 = tf.nn.relu(out_1, name='relu_1')
out_2 = tf.nn.conv2d_transpose(out_1, generator_variables_dict['W_2'], output_shape=tf.stack([tf.shape(out_1)[0], IMAGE_SIZE//8, IMAGE_SIZE//8, 256]), strides=[1, 2, 2, 1], padding='SAME')
out_2 = tf.nn.bias_add(out_2, generator_variables_dict['b_2'])
out_2 = batch_norm(out_2, generator_variables_dict["beta_2"], generator_variables_dict["gamma_2"], train_phase, scope='bn_2')
out_2 = tf.nn.relu(out_2, name='relu_2')
out_3 = tf.nn.conv2d_transpose(out_2, generator_variables_dict['W_3'], output_shape=tf.stack([tf.shape(out_2)[0], IMAGE_SIZE//4, IMAGE_SIZE//4, 128]), strides=[1, 2, 2, 1], padding='SAME')
out_3 = tf.nn.bias_add(out_3, generator_variables_dict['b_3'])
out_3 = batch_norm(out_3, generator_variables_dict["beta_3"], generator_variables_dict["gamma_3"], train_phase, scope='bn_3')
out_3 = tf.nn.relu(out_3, name='relu_3')
out_4 = tf.nn.conv2d_transpose(out_3, generator_variables_dict['W_4'], output_shape=tf.stack([tf.shape(out_3)[0], IMAGE_SIZE//2, IMAGE_SIZE//2, 64]), strides=[1, 2, 2, 1], padding='SAME')
out_4 = tf.nn.bias_add(out_4, generator_variables_dict['b_4'])
out_4 = batch_norm(out_4, generator_variables_dict["beta_4"], generator_variables_dict["gamma_4"], train_phase, scope='bn_4')
out_4 = tf.nn.relu(out_4, name='relu_4')
out_5 = tf.nn.conv2d_transpose(out_4, generator_variables_dict['W_5'], output_shape=tf.stack([tf.shape(out_4)[0], IMAGE_SIZE, IMAGE_SIZE, IMAGE_CHANNEL]), strides=[1, 2, 2, 1], padding='SAME')
out_5 = tf.nn.bias_add(out_5, generator_variables_dict['b_5'])
out_5 = tf.nn.tanh(out_5, name='tanh_5')
return out_5
discriminator_variables_dict = {
"W_1": tf.Variable(tf.truncated_normal([4, 4, IMAGE_CHANNEL, 32], stddev=0.002), name='Discriminator/W_1'),
"b_1": tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/b_1'),
'beta_1': tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/beta_1'),
'gamma_1': tf.Variable(tf.random_normal(shape=[32], mean=1.0, stddev=0.02), name='Discriminator/gamma_1'),
"W_2": tf.Variable(tf.truncated_normal([4, 4, 32, 64], stddev=0.002), name='Discriminator/W_2'),
"b_2": tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/b_2'),
'beta_2': tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/beta_2'),
'gamma_2': tf.Variable(tf.random_normal(shape=[64], mean=1.0, stddev=0.02), name='Discriminator/gamma_2'),
"W_3": tf.Variable(tf.truncated_normal([4, 4, 64, 128], stddev=0.002), name='Discriminator/W_3'),
"b_3": tf.Variable(tf.constant(0.0, shape=[128]), name='Discriminator/b_3'),
'beta_3': tf.Variable(tf.constant(0.0, shape=[128]), name='Discriminator/beta_3'),
'gamma_3': tf.Variable(tf.random_normal(shape=[128], mean=1.0, stddev=0.02), name='Discriminator/gamma_3'),
"W_4": tf.Variable(tf.truncated_normal([4, 4, 64, 128], stddev=0.002), name='Discriminator/W_4'),
"b_4": tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/b_4'),
'beta_4': tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/beta_4'),
'gamma_4': tf.Variable(tf.random_normal(shape=[64], mean=1.0, stddev=0.02), name='Discriminator/gamma_4'),
"W_5": tf.Variable(tf.truncated_normal([4, 4, 32, 64], stddev=0.002), name='Discriminator/W_5'),
"b_5": tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/b_5'),
'beta_5': tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/beta_5'),
'gamma_5': tf.Variable(tf.random_normal(shape=[32], mean=1.0, stddev=0.02), name='Discriminator/gamma_5'),
"W_6": tf.Variable(tf.truncated_normal([4, 4, 3, 32], stddev=0.002), name='Discriminator/W_6'),
"b_6": tf.Variable(tf.constant(0.0, shape=[3]), name='Discriminator/b_6')
}
# Discriminator
def discriminator(input_images):
with tf.variable_scope("Discriminator"):
# Encoder
out_1 = tf.nn.conv2d(input_images, discriminator_variables_dict['W_1'], strides=[1, 2, 2, 1], padding='SAME')
out_1 = tf.nn.bias_add(out_1, discriminator_variables_dict['b_1'])
out_1 = batch_norm(out_1, discriminator_variables_dict['beta_1'], discriminator_variables_dict['gamma_1'], train_phase, scope='bn_1')
out_1 = tf.maximum(0.2 * out_1, out_1, 'leaky_relu_1')
out_2 = tf.nn.conv2d(out_1, discriminator_variables_dict['W_2'], strides=[1, 2, 2, 1], padding='SAME')
out_2 = tf.nn.bias_add(out_2, discriminator_variables_dict['b_2'])
out_2 = batch_norm(out_2, discriminator_variables_dict['beta_2'], discriminator_variables_dict['gamma_2'], train_phase, scope='bn_2')
out_2 = tf.maximum(0.2 * out_2, out_2, 'leaky_relu_2')
out_3 = tf.nn.conv2d(out_2, discriminator_variables_dict['W_3'], strides=[1, 2, 2, 1], padding='SAME')
out_3 = tf.nn.bias_add(out_3, discriminator_variables_dict['b_3'])
out_3 = batch_norm(out_3, discriminator_variables_dict['beta_3'], discriminator_variables_dict['gamma_3'], train_phase, scope='bn_3')
out_3 = tf.maximum(0.2 * out_3, out_3, 'leaky_relu_3')
encode = tf.reshape(out_3, [-1, 2*IMAGE_SIZE*IMAGE_SIZE])
# Decoder
out_3 = tf.reshape(encode, [-1, IMAGE_SIZE//8, IMAGE_SIZE//8, 128])
out_4 = tf.nn.conv2d_transpose(out_3, discriminator_variables_dict['W_4'], output_shape=tf.stack([tf.shape(out_3)[0], IMAGE_SIZE//4, IMAGE_SIZE//4, 64]), strides=[1, 2, 2, 1], padding='SAME')
out_4 = tf.nn.bias_add(out_4, discriminator_variables_dict['b_4'])
out_4 = batch_norm(out_4, discriminator_variables_dict['beta_4'], discriminator_variables_dict['gamma_4'], train_phase, scope='bn_4')
out_4 = tf.maximum(0.2 * out_4, out_4, 'leaky_relu_4')
out_5 = tf.nn.conv2d_transpose(out_4, discriminator_variables_dict['W_5'], output_shape=tf.stack([tf.shape(out_4)[0], IMAGE_SIZE//2, IMAGE_SIZE//2, 32]), strides=[1, 2, 2, 1], padding='SAME')
out_5 = tf.nn.bias_add(out_5, discriminator_variables_dict['b_5'])
out_5 = batch_norm(out_5, discriminator_variables_dict['beta_5'], discriminator_variables_dict['gamma_5'], train_phase, scope='bn_5')
out_5 = tf.maximum(0.2 * out_5, out_5, 'leaky_relu_5')
out_6 = tf.nn.conv2d_transpose(out_5, discriminator_variables_dict['W_6'], output_shape=tf.stack([tf.shape(out_5)[0], IMAGE_SIZE, IMAGE_SIZE, 3]), strides=[1, 2, 2, 1], padding='SAME')
out_6 = tf.nn.bias_add(out_6, discriminator_variables_dict['b_6'])
decoded = tf.nn.tanh(out_6, name="tanh_6")
return encode, decoded
# mean squared errors
_, real_decoded = discriminator(X)
real_loss = tf.sqrt(2 * tf.nn.l2_loss(real_decoded - X)) / batch_size
fake_image = generator(noise)
_, fake_decoded = discriminator(fake_image)
fake_loss = tf.sqrt(2 * tf.nn.l2_loss(fake_decoded - fake_image)) / batch_size
# loss
# D_loss = real_loss + tf.maximum(1 - fake_loss, 0)
margin = 20
D_loss = margin - fake_loss + real_loss
G_loss = fake_loss # no pt
def optimizer(loss, d_or_g):
optim = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.5)
#print([v.name for v in tf.trainable_variables() if v.name.startswith(d_or_g)])
var_list = [v for v in tf.trainable_variables() if v.name.startswith(d_or_g)]
gradient = optim.compute_gradients(loss, var_list=var_list)
return optim.apply_gradients(gradient)
train_op_G = optimizer(G_loss, 'Generator')
train_op_D = optimizer(D_loss, 'Discriminator')
with tf.Session() as sess:
sess.run(tf.global_variables_initializer(), feed_dict={train_phase: True})
saver = tf.train.Saver()
# 恢复前一次训练
ckpt = tf.train.get_checkpoint_state('.')
if ckpt != None:
print(ckpt.model_checkpoint_path)
saver.restore(sess, ckpt.model_checkpoint_path)
else:
print("没找到模型")
step = 0
for i in range(40):
for j in range(num_batch):
batch_noise = np.random.uniform(-1.0, 1.0, size=[batch_size, z_dim]).astype(np.float32)
d_loss, _ = sess.run([D_loss, train_op_D], feed_dict={noise: batch_noise, X: get_next_batch(j), train_phase: True})
g_loss, _ = sess.run([G_loss, train_op_G], feed_dict={noise: batch_noise, X: get_next_batch(j), train_phase: True})
g_loss, _ = sess.run([G_loss, train_op_G], feed_dict={noise: batch_noise, X: get_next_batch(j), train_phase: True})
print(step, d_loss, g_loss)
# 保存模型并生成图像
if step % 100 == 0:
saver.save(sess, "celeba.model", global_step=step)
test_noise = np.random.uniform(-1.0, 1.0, size=(5, z_dim)).astype(np.float32)
images = sess.run(fake_image, feed_dict={noise: test_noise, train_phase: False})
for k in range(5):
image = images[k, :, :, :]
image += 1
image *= 127.5
image = np.clip(image, 0, 255).astype(np.uint8)
image = np.reshape(image, (IMAGE_SIZE, IMAGE_SIZE, -1))
misc.imsave('fake_image' + str(step) + str(k) + '.jpg', image)
step += 1
2、生成图片效果
iter | image1 | image2 |
---|---|---|
1000-2000 | ||
4000-6000 | ||
8000-10K | ||
30K-50K | ||
60K-70K | ||
9K-10K |
最后
以上就是外向便当为你收集整理的TensorFlow实战:Gans 学习明星人脸的全部内容,希望文章能够帮你解决TensorFlow实战:Gans 学习明星人脸所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复