概述
Binary Tree Level Order Traversal
Total Accepted: 105297
Total Submissions: 318601
Difficulty: Easy
Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, level by level).
For example:
Given binary tree {3,9,20,#,#,15,7}
,
3 / 9 20 / 15 7
return its level order traversal as:
[ [3], [9,20], [15,7] ]
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
Subscribe to see which companies asked this question
Hide Similar Problems
思路:
层次遍历,BFS。
新
java code:
/**
* Definition for a binary tree node.
* public class TreeNode {
*
int val;
*
TreeNode left;
*
TreeNode right;
*
TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
Queue<TreeNode> queue = new LinkedList<TreeNode>();
List<List<Integer>> ans = new LinkedList<List<Integer>>();
if(root == null) return ans;
queue.offer(root);
while(!queue.isEmpty()) {
int size = queue.size();
List<Integer> subAns = new LinkedList<Integer>();
for(int i=0;i<size;i++) {
TreeNode tmp = queue.poll();
subAns.add(tmp.val);
if(tmp.left != null) queue.offer(tmp.left);
if(tmp.right != null) queue.offer(tmp.right);
}
ans.add(subAns);
}
return ans;
}
}
c++ code:
/**
* Definition for a binary tree node.
* struct TreeNode {
*
int val;
*
TreeNode *left;
*
TreeNode *right;
*
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
vector<vector<int>> ret;
if(NULL == root) return ret;
queue<TreeNode *> q[2];
stack<vector<int>> s;
int cur=0;
q[cur].push(root);
while(!q[cur].empty()) {
vector<int> tmp;
while(!q[cur].empty()) {
TreeNode *p = q[cur].front();
tmp.push_back(p->val);
if(p->left) q[cur^1].push(p->left);
if(p->right) q[cur^1].push(p->right);
q[cur].pop();
}
cur^=1;
ret.push_back(tmp);
}
return ret;
}
};
最后
以上就是风中路灯为你收集整理的LeetCode:Binary Tree Level Order Traversal的全部内容,希望文章能够帮你解决LeetCode:Binary Tree Level Order Traversal所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复