我是靠谱客的博主 想人陪黑猫,最近开发中收集的这篇文章主要介绍Python 开源项目records库学习records库源码学习,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

records库源码学习

records 项目地址:https://github.com/kennethreitz/records

  • 该项目是大神kennethreitz写的一个只有500行代码的库
  • 用来入门学习一个开源项目 个人觉得还是很不错的
  • 项目源码名为records.py位于根目录下
  • 作者使用了pipenv来管理相关依赖
  • 你可以fork这个项目后,使用pipenv install安装相关依赖。前提是你已经安装了pipenv

不BB直接上代码?

# -*- coding: utf-8 -*-
import os
from sys import stdout
from collections import OrderedDict
from contextlib import contextmanager
from inspect import isclass
import tablib
from docopt import docopt
from sqlalchemy import create_engine, exc, inspect, text
DATABASE_URL = os.environ.get('DATABASE_URL')
def isexception(obj):
"""Given an object, return a boolean indicating whether it is an instance
or subclass of :py:class:`Exception`.
"""
if isinstance(obj, Exception):
# 判断obj是否是一个Exception对象
return True
if isclass(obj) and issubclass(obj, Exception):
# 判断obj是否是一个class 并且 是否是Exception的子类
return True
return False
class Record(object):
"""A row, from a query, from a database."""
__slots__ = ('_keys', '_values')
# 简单来讲__slots__属性控制了该类可以绑定的属性只有_keys和_values
# 单下划线保护变量,不能直接访问
def __init__(self, keys, values):
self._keys = keys
self._values = values
# Ensure that lengths match properly.
assert len(self._keys) == len(self._values)
# keys和values方法就是获取保护变量的值的函数
def keys(self):
"""Returns the list of column names from the query."""
return self._keys
def values(self):
"""Returns the list of values from the query."""
return self._values
def __repr__(self):
# repr就是对象的显示,与str相似但不同
return '<Record {}>'.format(self.export('json')[1:-1])
# 切片1:-1是因为这是一个str类型去掉左右的大括号字符串
def __getitem__(self, key):
# 该方法使该类的对象可以实现索引的功能,类似于:a_list[index]
# Support for index-based lookup.
# 如果传入的是int类型的,返回该int索引对应的values
if isinstance(key, int):
return self.values()[key]
# Support for string-based lookup.
# 如果传入的是字符串字段名称
if key in self.keys():
# 如果有这个字符串对应的键
i = self.keys().index(key)
# 根据键获取其在键的序列中的位置
if self.keys().count(key) > 1:
# 如果有多于1个该键则raise一个Error
raise KeyError("Record contains multiple '{}' fields.".format(key))
return self.values()[i]
# 根据在键序列中的位置到值序列中获取值
# 没有则抛出一个Error
raise KeyError("Record contains no '{}' field.".format(key))
def __getattr__(self, key):
# 作用于属性查找的最后一步,用来兜底;
# 这里使用该方法是为了该类的对象除了通过索引,还可以通过.属性来访问value
try:
return self[key]
except KeyError as e:
raise AttributeError(e)
def __dir__(self):
# 当dir()函数被调用时调用
standard = dir(super(Record, self))
# Merge standard attrs with generated ones (from column names).
return sorted(standard + [str(k) for k in self.keys()])
# 获取了父类object类的属性然后与record的keys作为属性添加进来
# sorted内置函数提供了对序列对象的排序功能
def get(self, key, default=None):
# 本人认为这个get方法的实现类似于dict中的get方法,同样是等效于r.get('A')==r['A']
"""Returns the value for a given key, or default."""
try:
return self[key]
except KeyError:
return default
# get __getattr__ __getitem__ 3个方法实现了通过索引,属性,get方法 3种方式获取value值
def as_dict(self, ordered=False):
"""Returns the row as a dictionary, as ordered."""
items = zip(self.keys(), self.values())
# zip 来将相互对应的key和value对应组合成多个元组 组成的list
# items=[(k1,v1),(k2,v2),.....]
return OrderedDict(items) if ordered else dict(items)
# 如果需要顺序字典则生成顺序字典,否则普通字典
@property
def dataset(self):
# 创建一个只读属性dataset,该属性返回一个Tablib的Dataset对象
"""A Tablib Dataset containing the row."""
data = tablib.Dataset()
data.headers = self.keys()
# 为Dataset对象设置headers属性为record对象的键
row = _reduce_datetimes(self.values())
# 处理key对应的values值,如果是datetime类型的values将转换为字符串
data.append(row)
# 为Dataset添加一条记录
return data
def export(self, format, **kwargs):
"""Exports the row to the given format."""
return self.dataset.export(format, **kwargs)
# 这里调用了Dataset对象的export方法导出数据,导出的为str类型
class RecordCollection(object):
# 记录集类
"""A set of excellent Records from a query."""
def __init__(self, rows):
# 初始化一些属性
self._rows = rows
self._all_rows = []
self.pending = True
def __repr__(self):
# 显示
return '<RecordCollection size={} pending={}>'.format(len(self), self.pending)
def __iter__(self): # 个人简单理解这里就是一种动态读取数据的方式,应该是为了提高性能吧
"""Iterate over all rows, consuming the underlying generator
only when necessary."""
i = 0
while True:
# Other code may have iterated between yields,
# so always check the cache.
if i < len(self):
yield self[i]
else:
# Throws StopIteration when done.
# Prevent StopIteration bubbling from generator, following https://www.python.org/dev/peps/pep-0479/
try:
yield next(self)
except StopIteration:
return
i += 1
def next(self):
# 单纯的调用__next__()方法
return self.__next__()
def __next__(self):
# 实现该方法证明该类的对象也是迭代器
try:
nextrow = next(self._rows)
# 迭代类对象的_rows属性的下一个元素
self._all_rows.append(nextrow)
# 添加_rows迭代到的下一个元素并添加到_all_rows属性中去
return nextrow
# 也就是说每次迭代该类对象就是迭代其_rows属性的元素
except StopIteration:
self.pending = False
raise StopIteration('RecordCollection contains no more rows.')
def __getitem__(self, key):
# 定制该类的索引用法
# key就是传入的索引,[]的索引只能是int和slice两种类型
is_int = isinstance(key, int)
# Convert RecordCollection[1] into slice.
if is_int:
key = slice(key, key + 1)
# 将你的整数索引转化为一个切片索引,该切片索引切出的就是本身
# key有可能直接就是一个slice类型的对象
while len(self) < key.stop or key.stop is None:
# 判断如果你访问的索引大于目前_all_rows的长度就迭代该对象去

try:
# 获取下一个元素,之所以要or key.stop is None是因为如果传入的就是一个索引就会出现stop为空
next(self)
# 调用该对象的__next__()方法,往_all_rows属性中添加元素
except StopIteration:
break
# 上面的while执行完_all_rows属性中就会填充至你所需最大元素的量
rows = self._all_rows[key]
# rows就是你索引需要的元素
if is_int:
# 个人认为这里判断传入的是整数索引还是切片索引,key不是int就是slice
return rows[0]
else:
# 如果是slice对象则rows就是一个切片后的list,返回的结果就是一个新的RecordCollection对象
return RecordCollection(iter(rows))
def __len__(self):
# 要想对象能够使用len()函数就需要内部实现__len__()方法该方法的返回值就是len()运算该对象的结果
return len(self._all_rows)
# len将返回_all_rows属性list的长度
def export(self, format, **kwargs):
# 将记录集导出指定格式
"""Export the RecordCollection to a given format (courtesy of Tablib)."""
return self.dataset.export(format, **kwargs)
@property
def dataset(self):
# 只读的dataset属性用来获取Dataset对象
"""A Tablib Dataset representation of the RecordCollection."""
# Create a new Tablib Dataset.
data = tablib.Dataset()
# If the RecordCollection is empty, just return the empty set
# Check number of rows by typecasting to list
if len(list(self)) == 0:
# 如果该对象中的长度为0则返回空的Dataset
return data
# Set the column names as headers on Tablib Dataset.
first = self[0]
# self[0]是返回__all_rows中的第0条记录
data.headers = first.keys() # 调用first对象的keys()方法来设置Dataset对象的表头
for row in self.all():
row = _reduce_datetimes(row.values())
data.append(row)
return data
def all(self, as_dict=False, as_ordereddict=False):
# 返回所有记录,可设置返回为dict
"""Returns a list of all rows for the RecordCollection. If they haven't
been fetched yet, consume the iterator and cache the results."""
# By calling list it calls the __iter__ method
rows = list(self)
# 遍历self自身,就是获取其_all_rows属性中的元素的list
if as_dict:
return [r.as_dict() for r in rows]
# 调用_all_rows中每个元素自身的as_dict()方法
elif as_ordereddict:
return [r.as_dict(ordered=True) for r in rows] # 同上
return rows
def as_dict(self, ordered=False):
# 将整个record集合转化为dict
return self.all(as_dict=not(ordered), as_ordereddict=ordered)
def first(self, default=None, as_dict=False, as_ordereddict=False):
"""Returns a single record for the RecordCollection, or `default`. If
`default` is an instance or subclass of Exception, then raise it
instead of returning it."""
# Try to get a record, or return/raise default.
try:
record = self[0]
# 获取_all_rows中的[0]第一个元素
except IndexError:
if isexception(default):
raise default
return default
# Cast and return.
if as_dict:
return record.as_dict()
elif as_ordereddict:
return record.as_dict(ordered=True)
else:
return record
def one(self, default=None, as_dict=False, as_ordereddict=False):
"""Returns a single record for the RecordCollection, ensuring that it
is the only record, or returns `default`. If `default` is an instance
or subclass of Exception, then raise it instead of returning it."""
# Ensure that we don't have more than one row.
try:
self[1]
# 去尝试访问第二个元素
except IndexError:
return self.first(default=default, as_dict=as_dict, as_ordereddict=as_ordereddict)
# 出错了就return他的第一个元素
else: # 尝试访问第二个元素没问题就抛出一个valueError 
raise ValueError('RecordCollection contained more than one row. '
'Expects only one row when using '
'RecordCollection.one')
def scalar(self, default=None):
"""Returns the first column of the first row, or `default`."""
row = self.one()
return row[0] if row else default
# 综合解读RecordCollection这个类,他提供了动态获取row中的元素,你访问到的最大元素位置,其会动态为你获取
# 使用list(x)会迭代所有元素,此时会自动将row属性中的所有元素添加到_all_rows属性中
# 使用索引访问 也是动态获取到你所取索引之前的所有元素到_all_rows中
class Database(object):
"""A Database. Encapsulates a url and an SQLAlchemy engine with a pool of
connections.
"""
def __init__(self, db_url=None, **kwargs):
# If no db_url was provided, fallback to $DATABASE_URL.
self.db_url = db_url or DATABASE_URL
# DATABASE_URL是从环境变量中提取的值,赋值操作中的or表示or前为true则赋值or前的
if not self.db_url:
raise ValueError('You must provide a db_url.')
# 如果既没有传参 环境变量也没用找到则抛出错误
# Create an engine.
self._engine = create_engine(self.db_url, **kwargs)
# create_engine是调用SQLAlchemy中的方法
self.open = True
def close(self):
# 调用engine对象的dispose()方法
"""Closes the Database."""
self._engine.dispose()
self.open = False
# 综上可看出,这个open属性应该是表示是否连接打开了数据库
def __enter__(self):
# 紧跟with后面的语句被求值后,返回对象的__enter__()方法被调用,这个方法的返回值将被赋值给as后面的变量
return self
def __exit__(self, exc, val, traceback):
#
当with后面的代码块全部被执行完之后,将调用前面返回对象的__exit__()方法。
self.close()
def __repr__(self):
# Database对象的显示
return '<Database open={}>'.format(self.open)
def get_table_names(self, internal=False):
"""Returns a list of table names for the connected database."""
# Setup SQLAlchemy for Database inspection.
return inspect(self._engine).get_table_names()
# 都是在调用SQLAlchemy的一些函数,不深究,知道其返回什么就o
# 将返回所连接数据库中的所有数据表名的一个list
def get_connection(self):
"""Get a connection to this Database. Connections are retrieved from a
pool.
"""
if not self.open:
raise exc.ResourceClosedError('Database closed.')
# 如果数据库未打开则抛出一个错误
return Connection(self._engine.connect())
# 返回一个Connection对象,并未该对象传入Engine对象的connect()方法的返回值
def query(self, query, fetchall=False, **params):
# 实际就是调用Connection对象的query方法
"""Executes the given SQL query against the Database. Parameters can,
optionally, be provided. Returns a RecordCollection, which can be
iterated over to get result rows as dictionaries.
"""
with self.get_connection() as conn:
# conn就是Connection对象
return conn.query(query, fetchall, **params)
# 调用Connection的query方法,跳到下面看这个方法
def bulk_query(self, query, *multiparams):
# 实际是调用Connection对象的bulk_query方法
"""Bulk insert or update."""
with self.get_connection() as conn:
conn.bulk_query(query, *multiparams)
def query_file(self, path, fetchall=False, **params):
# 同上
"""Like Database.query, but takes a filename to load a query from."""
with self.get_connection() as conn:
return conn.query_file(path, fetchall, **params)
def bulk_query_file(self, path, *multiparams):
# 同上
"""Like Database.bulk_query, but takes a filename to load a query from."""
with self.get_connection() as conn:
conn.bulk_query_file(path, *multiparams)
@contextmanager
# 实现了与__enter__与__exit__一样的上下文管理功能,只不过这是一个装饰器,是用来针对一个方法的
def transaction(self):
# 事务管理
"""A context manager for executing a transaction on this Database."""
# @contextmanager装饰的方法,当你with这个方法时会顺序执行到yield语句,yield语句返回的对象给as后的变量
# 然后执行with下的语句块,正常执行完毕,又回到yield后的语句顺序执行
conn = self.get_connection()
tx = conn.transaction()
# 调用Connection对象的transaction方法
try:
yield conn
tx.commit()
# 调用SQLAlchemy的事务相关的方法,提交
except:
tx.rollback()
# 回滚
finally:
conn.close()
# 关闭
class Connection(object):
# 该类的_conn属性对应 SQLAlchemy的Connection对象
"""A Database connection."""
def __init__(self, connection):
# 根据上面Database类的get_connection()方法猜测这个connection参数是传入SqlAlchemy
self._conn = connection
# 模块中的Connection对象
self.open = not connection.closed
def close(self):
self._conn.close()
# SQLAlchemy的Connection对象的close方法调用
self.open = False
# 表示这个Connection已经关闭
def __enter__(self):
return self
def __exit__(self, exc, val, traceback):
self.close()
# 关闭 SQLAlchemy的Connection的连接
def __repr__(self):
return '<Connection open={}>'.format(self.open)
def query(self, query, fetchall=False, **params):
"""Executes the given SQL query against the connected Database.
Parameters can, optionally, be provided. Returns a RecordCollection,
which can be iterated over to get result rows as dictionaries.
"""
# Execute the given query.
cursor = self._conn.execute(text(query), **params) # TODO: PARAMS GO HERE
# 个人 研究了以下上面这个execute的意义就是使用text()函数可以使你的sql语句中可以动态设置一些参数,这个参数的传入通
# 过后面的params这个参数传到execute函数中去
# Row-by-row Record generator.
# cursor是一个迭代器,该迭代器中是查询到的每一条记录
row_gen = (Record(cursor.keys(), row) for row in cursor)
# 将查询到的记录的表头跟每个内容传个一个Record对象
# 这里使用()生成了一个包含多个Record对象的迭代器对象
# Convert psycopg2 results to RecordCollection.
results = RecordCollection(row_gen)
# Fetch all results if desired.
if fetchall:
results.all()
return results
def bulk_query(self, query, *multiparams):
"""Bulk insert or update."""
self._conn.execute(text(query), *multiparams)
# 同样调用了Connection对象的execute方法
def query_file(self, path, fetchall=False, **params):
# 读取一个文件来执行sql语句
"""Like Connection.query, but takes a filename to load a query from."""
# If path doesn't exists
if not os.path.exists(path):
raise IOError("File '{}' not found!".format(path))
# 判断文件是否存在,不在就抛出Error
# If it's a directory
if os.path.isdir(path):
raise IOError("'{}' is a directory!".format(path))
# 判断路径如果是文件夹就抛出Error
# Read the given .sql file into memory.
with open(path) as f:
query = f.read()
# Defer processing to self.query method.
return self.query(query=query, fetchall=fetchall, **params)
# 将读取到的文件传给query参数
def bulk_query_file(self, path, *multiparams):
"""Like Connection.bulk_query, but takes a filename to load a query
from.
"""
# If path doesn't exists
if not os.path.exists(path):
raise IOError("File '{}'' not found!".format(path))
# If it's a directory
if os.path.isdir(path):
raise IOError("'{}' is a directory!".format(path))
# Read the given .sql file into memory.
with open(path) as f:
query = f.read()
self._conn.execute(text(query), *multiparams)
def transaction(self):
"""Returns a transaction object. Call ``commit`` or ``rollback``
on the returned object as appropriate."""
return self._conn.begin()
# 全局的方法
def _reduce_datetimes(row):
# 转换datetimes为strings
"""Receives a row, converts datetimes to strings."""
row = list(row)
# 这里你可能会考虑为何不for in 这个row 而是利用其索引来操作,其实是因为如果不这样做无法应用你的修改到原始list中的内容
for i in range(len(row)):
if hasattr(row[i], 'isoformat'):
# 判断数据是否含有isoformat这个属性或者方法
row[i] = row[i].isoformat()
# 将datetime类转换为ISO格式的时间字符串
return tuple(row)
# cli-command line interface 命令行界面
def cli():
supported_formats = 'csv tsv json yaml html xls xlsx dbf latex ods'.split()
# 将该字符串以空格分割成一个list
formats_lst=", ".join(supported_formats) # 将上述list以逗号分隔开形成一个字符串
cli_docs ="""Records: SQL for Humans™
A Kenneth Reitz project.
Usage:
records <query> [<format>] [<params>...] [--url=<url>]
records (-h | --help)
Options:
-h --help
Show this screen.
--url=<url>
The database URL to use. Defaults to $DATABASE_URL.
Supported Formats:
%(formats_lst)s
Note: xls, xlsx, dbf, and ods formats are binary, and should only be
used with redirected output e.g. '$ records sql xls > sql.xls'.
Query Parameters:
Query parameters can be specified in key=value format, and injected
into your query in :key format e.g.:
$ records 'select * from repos where language ~= :lang' lang=python
Notes:
- While you may specify a database connection string with --url, records
will automatically default to the value of $DATABASE_URL, if available.
- Query is intended to be the path of a SQL file, however a query string
can be provided instead. Use this feature discernfully; it's dangerous.
- Records is intended for report-style exports of database queries, and
has not yet been optimized for extremely large data dumps.
""" % dict(formats_lst=formats_lst)
# Parse the command-line arguments.
arguments = docopt(cli_docs)
query = arguments['<query>']
params = arguments['<params>']
format = arguments.get('<format>')
if format and "=" in format:
del arguments['<format>']
arguments['<params>'].append(format)
format = None
if format and format not in supported_formats:
print('%s format not supported.' % format)
print('Supported formats are %s.' % formats_lst)
exit(62)
# Can't send an empty list if params aren't expected.
try:
params = dict([i.split('=') for i in params])
except ValueError:
print('Parameters must be given in key=value format.')
exit(64)
# Be ready to fail on missing packages
try:
# Create the Database.
db = Database(arguments['--url'])
# Execute the query, if it is a found file.
if os.path.isfile(query):
rows = db.query_file(query, **params)
# Execute the query, if it appears to be a query string.
elif len(query.split()) > 2:
rows = db.query(query, **params)
# Otherwise, say the file wasn't found.
else:
print('The given query could not be found.')
exit(66)
# Print results in desired format.
if format:
content = rows.export(format)
if isinstance(content, bytes):
print_bytes(content)
else:
print(content)
else:
print(rows.dataset)
except ImportError as impexc:
print(impexc.msg)
print("Used database or format require a package, which is missing.")
print("Try to install missing packages.")
exit(60)
def print_bytes(content):
try:
stdout.buffer.write(content)
except AttributeError:
stdout.write(content)
# Run the CLI when executed directly.
if __name__ == '__main__':
cli()

最后

以上就是想人陪黑猫为你收集整理的Python 开源项目records库学习records库源码学习的全部内容,希望文章能够帮你解决Python 开源项目records库学习records库源码学习所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(55)

评论列表共有 0 条评论

立即
投稿
返回
顶部