概述
连加
【BV1eV411U7ht】积
lim
n
→
+
∞
(
1
n
+
1
+
1
n
+
2
+
⋯
+
1
n
+
n
)
limlimits_{n→+∞}(frac1{n+1}+frac1{n+2}+⋯+frac1{n+n})
n→+∞lim(n+11+n+21+⋯+n+n1)
=
lim
n
→
+
∞
1
n
(
1
1
+
1
n
+
1
1
+
2
n
+
⋯
+
1
1
+
n
n
)
=limlimits_{n→+∞}frac1n(frac1{1+frac1n}+frac1{1+frac2n}+⋯+frac1{1+frac nn})
=n→+∞limn1(1+n11+1+n21+⋯+1+nn1)
=
∫
0
1
d
x
1
+
x
=∫_0^1frac{mathrm dx}{1+x}
=∫011+xdx
=
ln
2
=ln2
=ln2
【BV1hN4y1F79E】积
lim
n
→
+
∞
(
1
+
2
+
⋯
+
n
)
(
1
1
+
1
2
+
⋯
+
1
n
)
n
(
n
+
1
)
limlimits_{n→+∞}frac{(sqrt1+sqrt2+⋯+sqrt n)(frac1{sqrt1}+frac1{sqrt2}+⋯+frac1{sqrt n})}{n(n+1)}
n→+∞limn(n+1)(1+2+⋯+n)(11+21+⋯+n1)
=
lim
n
→
+
∞
(
∫
1
n
t
d
t
)
(
∫
1
n
1
t
d
t
)
n
(
n
+
1
)
=limlimits_{n→+∞}frac{(∫_1^nsqrt tmathrm dt)(∫_1^nfrac1{sqrt t}mathrm dt)}{n(n+1)}
=n→+∞limn(n+1)(∫1ntdt)(∫1nt1dt)
=
lim
n
→
+
∞
2
3
n
3
2
⋅
2
n
n
(
n
+
1
)
=limlimits_{n→+∞}frac{frac23n^frac32·2sqrt n}{n(n+1)}
=n→+∞limn(n+1)32n23⋅2n
=
lim
n
→
+
∞
4
3
n
2
n
(
n
+
1
)
=limlimits_{n→+∞}frac43frac{n^2}{n(n+1)}
=n→+∞lim34n(n+1)n2
=
4
3
=frac43
=34
【BV1r3411G7DJ】【BV1wb4y1472j】积洛
lim
n
→
+
∞
1
+
1
2
+
⋯
+
1
n
ln
(
1
+
n
)
limlimits_{n→+∞}frac{1+frac12+⋯+frac1n}{ln(1+n)}
n→+∞limln(1+n)1+21+⋯+n1
=
lim
n
→
+
∞
∫
1
n
1
t
d
t
ln
(
1
+
n
)
=limlimits_{n→+∞}frac{∫_1^nfrac1tmathrm dt}{ln(1+n)}
=n→+∞limln(1+n)∫1nt1dt
=
lim
n
→
+
∞
1
n
1
1
+
n
=limlimits_{n→+∞}frac{frac1n}{frac1{1+n}}
=n→+∞lim1+n1n1
=
1
=1
=1
【BV1Ap4y1s7FP】积洛指洛
lim
n
→
+
∞
1
+
2
+
⋯
+
n
n
n
limlimits_{n→+∞}frac{1+sqrt2+⋯+sqrt[n]n}n
n→+∞limn1+2+⋯+nn
=
lim
n
→
+
∞
∫
1
n
t
t
d
t
n
=limlimits_{n→+∞}frac{∫_1^nsqrt[t]tmathrm dt}n
=n→+∞limn∫1nttdt
=
lim
n
→
+
∞
n
1
n
=limlimits_{n→+∞}n^frac1n
=n→+∞limnn1
=
lim
n
→
+
∞
e
ln
n
n
=limlimits_{n→+∞}e^frac{ln n}n
=n→+∞limenlnn
=
e
0
=e^0
=e0
=
1
=1
=1
【BV1HP4y1o7bx】积洛
lim
t
→
1
−
1
−
t
(
1
+
t
1
2
+
t
2
2
+
t
3
2
+
⋯
)
limlimits_{t→1^-}sqrt{1-t}(1+t^{1^2}+t^{2^2}+t^{3^2}+⋯)
t→1−lim1−t(1+t12+t22+t32+⋯)
=
lim
t
→
1
−
1
−
t
∫
0
+
∞
t
x
2
d
x
=limlimits_{t→1^-}sqrt{1-t}∫_0^{+∞}t^{x^2}mathrm dx
=t→1−lim1−t∫0+∞tx2dx
=
lim
t
→
1
−
1
−
t
∫
0
+
∞
e
x
2
ln
t
d
x
=limlimits_{t→1^-}sqrt{1-t}∫_0^{+∞}e^{x^2ln t}mathrm dx
=t→1−lim1−t∫0+∞ex2lntdx
因为
∫
0
+
∞
e
−
x
2
d
x
=
π
2
∫_0^{+∞}e^{-x^2}mathrm dx=frac{sqrtπ}2
∫0+∞e−x2dx=2π,换元可得
∫
0
+
∞
e
−
k
x
2
d
x
=
π
2
1
k
∫_0^{+∞}e^{-kx^2}mathrm dx=frac{sqrtπ}2sqrtfrac1k
∫0+∞e−kx2dx=2πk1
所以原式
=
π
2
lim
t
→
1
−
1
−
t
−
ln
t
=frac{sqrtπ}2sqrt{limlimits_{t→1^-}frac{1-t}{-ln t}}
=2πt→1−lim−lnt1−t
=
π
2
lim
t
→
1
−
−
1
−
1
t
=frac{sqrtπ}2sqrt{limlimits_{t→1^-}frac{-1}{-frac1t}}
=2πt→1−lim−t1−1
=
π
2
=frac{sqrtπ}2
=2π
【BV1KD4y1H7MQ】积
lim
n
→
+
∞
(
1
4
n
+
1
+
1
4
n
+
2
+
⋯
+
1
4
n
+
2
n
)
limlimits_{n→+∞}(frac1{4n+1}+frac1{4n+2}+⋯+frac1{4n+2n})
n→+∞lim(4n+11+4n+21+⋯+4n+2n1)
=
lim
n
→
+
∞
1
n
(
1
4
+
1
n
+
1
4
+
2
n
+
⋯
+
1
4
+
2
n
n
)
=limlimits_{n→+∞}frac1n(frac1{4+frac1n}+frac1{4+frac2n}+⋯+frac1{4+frac{2n}n})
=n→+∞limn1(4+n11+4+n21+⋯+4+n2n1)
=
∫
0
2
d
x
4
+
x
=∫_0^2frac{mathrm dx}{4+x}
=∫024+xdx
=
[
ln
(
x
+
4
)
]
0
2
=[ln(x+4)]_0^2
=[ln(x+4)]02
=
ln
3
−
ln
2
=ln3-ln2
=ln3−ln2
【BV1PU4y127bK】积洛
lim
n
→
+
∞
1
k
+
2
k
+
⋯
+
n
k
n
k
+
1
limlimits_{n→+∞}frac{1^k+2^k+⋯+n^k}{n^{k+1}}
n→+∞limnk+11k+2k+⋯+nk
=
lim
n
→
+
∞
∫
1
t
t
k
d
t
n
k
+
1
=limlimits_{n→+∞}frac{∫_1^tt^kmathrm dt}{n^{k+1}}
=n→+∞limnk+1∫1ttkdt
=
lim
n
→
+
∞
n
k
(
k
+
1
)
n
k
=limlimits_{n→+∞}frac{n^k}{(k+1)n^k}
=n→+∞lim(k+1)nknk
=
1
k
+
1
=frac1{k+1}
=k+11,且k>-1时收敛
【BV1Ty4y17754】积
lim
n
→
+
∞
1
+
2
+
⋯
+
n
n
(
1
+
2
+
⋯
+
n
)
limlimits_{n→+∞}frac{sqrt1+sqrt2+⋯+sqrt n}{sqrt{n(1+2+⋯+n)}}
n→+∞limn(1+2+⋯+n)1+2+⋯+n
=
lim
n
→
+
∞
∫
1
n
t
d
t
n
∫
0
n
t
d
t
=limlimits_{n→+∞}frac{∫_1^nsqrt tmathrm dt}{sqrt nsqrt{∫_0^ntmathrm dt}}
=n→+∞limn∫0ntdt∫1ntdt
=
lim
n
→
+
∞
2
3
n
3
2
n
1
2
n
2
=limlimits_{n→+∞}frac{frac23n^frac32}{sqrt nsqrt{frac12n^2}}
=n→+∞limn21n232n23
=
2
3
2
=frac23sqrt2
=322
连乘
【BV1aT41117ms】指积
lim
n
→
+
∞
(
n
+
1
)
(
n
+
2
)
⋯
2
n
n
n
limlimits_{n→+∞}frac{sqrt[n]{(n+1)(n+2)⋯2n}}n
n→+∞limnn(n+1)(n+2)⋯2n
=
lim
n
→
+
∞
e
1
n
ln
(
n
+
1
)
+
1
n
ln
(
n
+
2
)
+
⋯
+
1
n
ln
2
n
−
ln
n
=limlimits_{n→+∞}e^{frac1nln(n+1)+frac1nln(n+2)+⋯+frac1nln2n-ln n}
=n→+∞limen1ln(n+1)+n1ln(n+2)+⋯+n1ln2n−lnn
=
lim
n
→
+
∞
e
1
n
ln
(
1
+
1
n
)
+
1
n
ln
(
1
+
2
n
)
+
⋯
+
1
n
ln
(
1
+
n
n
)
=limlimits_{n→+∞}e^{frac1nln(1+frac1n)+frac1nln(1+frac2n)+⋯ +frac1nln(1+frac nn)}
=n→+∞limen1ln(1+n1)+n1ln(1+n2)+⋯+n1ln(1+nn)
=
e
∫
0
1
ln
(
1
+
x
)
d
x
=e^{∫_0^1ln(1+x)mathrm dx}
=e∫01ln(1+x)dx
=
e
[
(
1
+
x
)
ln
(
1
+
x
)
−
x
]
0
1
=e^{[(1+x)ln(1+x)-x]^1_0}
=e[(1+x)ln(1+x)−x]01
=
4
e
=frac4e
=e4
【BV1ch411D7pT】
lim
x
→
0
cos
x
2
cos
x
2
2
⋯
cos
x
2
n
limlimits_{x→0}cosfrac x2cosfrac x{2^2}⋯cosfrac x{2^n}
x→0limcos2xcos22x⋯cos2nx
=
lim
x
→
0
cos
x
2
cos
x
2
2
⋯
cos
x
2
n
⋅
sin
x
2
n
⋅
1
sin
x
2
n
=limlimits_{x→0}cosfrac x2cosfrac x{2^2}⋯cosfrac x{2^n}·sinfrac x{2^n}·frac1{sinfrac x{2^n}}
=x→0limcos2xcos22x⋯cos2nx⋅sin2nx⋅sin2nx1
=
1
2
lim
x
→
0
cos
x
2
cos
x
2
2
⋯
cos
x
2
n
−
1
⋅
sin
x
2
n
−
1
⋅
1
sin
x
2
n
=frac12limlimits_{x→0}cosfrac x2cosfrac x{2^2}⋯cosfrac x{2^{n-1}}·sinfrac x{2^{n-1}}·frac1{sinfrac x{2^n}}
=21x→0limcos2xcos22x⋯cos2n−1x⋅sin2n−1x⋅sin2nx1
=
1
2
2
lim
x
→
0
cos
x
2
cos
x
2
2
⋯
cos
x
2
n
−
2
⋅
sin
x
2
n
−
2
⋅
1
sin
x
2
n
=frac1{2^2}limlimits_{x→0}cosfrac x2cosfrac x{2^2}⋯cosfrac x{2^{n-2}}·sinfrac x{2^{n-2}}·frac1{sinfrac x{2^n}}
=221x→0limcos2xcos22x⋯cos2n−2x⋅sin2n−2x⋅sin2nx1
=
⋯
=⋯
=⋯
=
1
2
n
lim
x
→
0
sin
x
sin
x
2
n
=frac1{2^n}limlimits_{x→0}frac{sin x}{sinfrac x{2^n}}
=2n1x→0limsin2nxsinx
=
1
2
n
⋅
2
n
=frac1{2^n}·2^n
=2n1⋅2n
=
1
=1
=1
【BV1ho4y1D7fS】指积
lim
n
→
+
∞
n
!
n
n
limlimits_{n→+∞}frac{sqrt[n]{n!}}n
n→+∞limnnn!
=
lim
n
→
+
∞
e
1
n
ln
n
!
−
ln
n
=limlimits_{n→+∞}e^{frac1nln n!-ln n}
=n→+∞limen1lnn!−lnn
=
lim
n
→
+
∞
e
1
n
(
ln
1
n
+
ln
2
n
+
⋯
+
ln
n
n
)
=limlimits_{n→+∞}e^{frac1n(lnfrac1n+lnfrac2n+⋯+lnfrac nn)}
=n→+∞limen1(lnn1+lnn2+⋯+lnnn)
=
e
∫
0
1
ln
x
d
x
=e^{∫_0^1ln xmathrm dx}
=e∫01lnxdx
=
1
e
=frac1e
=e1
【BV1hA411o7co】指积洛
lim
n
→
+
∞
(
n
2
+
1
)
(
n
2
+
2
)
⋯
(
n
2
+
n
)
(
n
2
−
1
)
(
n
2
−
2
)
⋯
(
n
2
−
n
)
limlimits_{n→+∞}frac{(n^2+1)(n^2+2)⋯(n^2+n)}{(n^2-1)(n^2-2)⋯(n^2-n)}
n→+∞lim(n2−1)(n2−2)⋯(n2−n)(n2+1)(n2+2)⋯(n2+n)
=
lim
n
→
+
∞
e
n
[
1
n
ln
(
n
+
1
n
n
−
1
n
)
+
1
n
ln
(
n
+
2
n
n
−
2
n
)
+
⋯
+
1
n
ln
(
n
+
n
n
n
−
n
n
)
]
=limlimits_{n→+∞}e^{n[frac1nln(frac{n+frac1n}{n-frac1n})+frac1nln(frac{n+frac2n}{n-frac2n})+⋯+frac1nln(frac{n+frac nn}{n-frac nn})]}
=n→+∞limen[n1ln(n−n1n+n1)+n1ln(n−n2n+n2)+⋯+n1ln(n−nnn+nn)]
=
lim
n
→
+
∞
e
n
∫
0
1
ln
(
n
+
t
n
−
t
)
d
t
=limlimits_{n→+∞}e^{n∫_0^1ln(frac{n+t}{n-t})mathrm dt}
=n→+∞limen∫01ln(n−tn+t)dt
=
lim
n
→
+
∞
e
n
[
(
n
+
t
)
ln
(
n
+
t
)
+
(
n
−
t
)
ln
(
n
−
t
)
]
0
1
=limlimits_{n→+∞}e^{n[(n+t)ln(n+t)+(n-t)ln(n-t)]_0^1}
=n→+∞limen[(n+t)ln(n+t)+(n−t)ln(n−t)]01
=
lim
n
→
+
∞
e
n
2
ln
n
2
−
1
n
2
+
n
ln
n
+
1
n
−
1
=limlimits_{n→+∞}e^{n^2lnfrac{n^2-1}{n^2}+nlnfrac{n+1}{n-1}}
=n→+∞limen2lnn2n2−1+nlnn−1n+1
=
lim
n
→
0
+
e
ln
(
1
−
n
2
)
n
2
+
ln
(
1
+
n
)
−
ln
(
1
−
n
)
n
=limlimits_{n→0^+}e^{frac{ln(1-n^2)}{n^2}+frac{ln(1+n)-ln(1-n)}n}
=n→0+limen2ln(1−n2)+nln(1+n)−ln(1−n)
=
lim
n
→
0
+
e
−
2
n
2
n
(
1
−
n
2
)
+
1
1
+
n
+
1
1
−
n
=limlimits_{n→0^+}e^{frac{-2n}{2n(1-n^2)}+frac1{1+n}+frac1{1-n}}
=n→0+lime2n(1−n2)−2n+1+n1+1−n1
=
e
=e
=e
【BV1Pg4y1i7pv】指倒展
lim
x
→
∞
(
x
n
(
x
−
1
)
(
x
−
2
)
⋯
(
x
−
n
)
)
2
x
limlimits_{x→∞}(frac{x^n}{(x-1)(x-2)⋯(x-n)})^{2x}
x→∞lim((x−1)(x−2)⋯(x−n)xn)2x
=
lim
x
→
∞
e
2
x
[
n
ln
x
−
ln
(
x
−
1
)
−
ln
(
x
−
2
)
−
⋯
−
ln
(
x
−
n
)
]
=limlimits_{x→∞}e^{2x[nln x-ln(x-1)-ln(x-2)-⋯-ln(x-n)]}
=x→∞lime2x[nlnx−ln(x−1)−ln(x−2)−⋯−ln(x−n)]
=
lim
x
→
∞
e
−
2
x
[
ln
(
1
−
1
x
)
+
ln
(
1
−
2
x
)
+
⋯
+
ln
(
1
−
n
x
)
]
=limlimits_{x→∞}e^{-2x[ln(1-frac1x)+ln(1-frac2x)+⋯+ln(1-frac nx)]}
=x→∞lime−2x[ln(1−x1)+ln(1−x2)+⋯+ln(1−xn)]
=
lim
x
→
0
e
−
2
x
[
ln
(
1
−
x
)
+
ln
(
1
−
2
x
)
+
⋯
+
ln
(
1
−
n
x
)
]
=limlimits_{x→0}e^{-frac2x[ln(1-x)+ln(1-2x)+⋯+ln(1-nx)]}
=x→0lime−x2[ln(1−x)+ln(1−2x)+⋯+ln(1−nx)]
=
lim
x
→
0
e
−
2
x
(
−
x
−
2
x
−
⋯
−
n
x
+
o
(
x
)
)
=limlimits_{x→0}e^{-frac2x(-x-2x-⋯-nx+o(x))}
=x→0lime−x2(−x−2x−⋯−nx+o(x))
=
lim
x
→
0
e
n
2
+
n
=limlimits_{x→0}e^{n^2+n}
=x→0limen2+n
取整
【BV1pM411t7Y1】
lim
x
→
0
x
[
1
x
]
limlimits_{x→0}x[frac1x]
x→0limx[x1]
=
lim
x
→
0
x
(
1
x
+
C
)
,
C
∈
R
=limlimits_{x→0}x(frac1x+C),C∈R
=x→0limx(x1+C),C∈R
=
lim
x
→
0
1
+
C
x
,
C
∈
R
=limlimits_{x→0}1+Cx,C∈R
=x→0lim1+Cx,C∈R
=
1
=1
=1
最后
以上就是香蕉黑米为你收集整理的求极限例题大赏:数列和/积连加连乘取整的全部内容,希望文章能够帮你解决求极限例题大赏:数列和/积连加连乘取整所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复