我是靠谱客的博主 香蕉黑米,最近开发中收集的这篇文章主要介绍求极限例题大赏:数列和/积连加连乘取整,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

连加

【BV1eV411U7ht】积
lim ⁡ n → + ∞ ( 1 n + 1 + 1 n + 2 + ⋯ + 1 n + n ) limlimits_{n→+∞}(frac1{n+1}+frac1{n+2}+⋯+frac1{n+n}) n+lim(n+11+n+21++n+n1)
= lim ⁡ n → + ∞ 1 n ( 1 1 + 1 n + 1 1 + 2 n + ⋯ + 1 1 + n n ) =limlimits_{n→+∞}frac1n(frac1{1+frac1n}+frac1{1+frac2n}+⋯+frac1{1+frac nn}) =n+limn1(1+n11+1+n21++1+nn1)
= ∫ 0 1 d x 1 + x =∫_0^1frac{mathrm dx}{1+x} =011+xdx
= ln ⁡ 2 =ln2 =ln2

【BV1hN4y1F79E】积
lim ⁡ n → + ∞ ( 1 + 2 + ⋯ + n ) ( 1 1 + 1 2 + ⋯ + 1 n ) n ( n + 1 ) limlimits_{n→+∞}frac{(sqrt1+sqrt2+⋯+sqrt n)(frac1{sqrt1}+frac1{sqrt2}+⋯+frac1{sqrt n})}{n(n+1)} n+limn(n+1)(1 +2 ++n )(1 1+2 1++n 1)
= lim ⁡ n → + ∞ ( ∫ 1 n t d t ) ( ∫ 1 n 1 t d t ) n ( n + 1 ) =limlimits_{n→+∞}frac{(∫_1^nsqrt tmathrm dt)(∫_1^nfrac1{sqrt t}mathrm dt)}{n(n+1)} =n+limn(n+1)(1nt dt)(1nt 1dt)
= lim ⁡ n → + ∞ 2 3 n 3 2 ⋅ 2 n n ( n + 1 ) =limlimits_{n→+∞}frac{frac23n^frac32·2sqrt n}{n(n+1)} =n+limn(n+1)32n232n
= lim ⁡ n → + ∞ 4 3 n 2 n ( n + 1 ) =limlimits_{n→+∞}frac43frac{n^2}{n(n+1)} =n+lim34n(n+1)n2
= 4 3 =frac43 =34

【BV1r3411G7DJ】【BV1wb4y1472j】积洛
lim ⁡ n → + ∞ 1 + 1 2 + ⋯ + 1 n ln ⁡ ( 1 + n ) limlimits_{n→+∞}frac{1+frac12+⋯+frac1n}{ln(1+n)} n+limln(1+n)1+21++n1
= lim ⁡ n → + ∞ ∫ 1 n 1 t d t ln ⁡ ( 1 + n ) =limlimits_{n→+∞}frac{∫_1^nfrac1tmathrm dt}{ln(1+n)} =n+limln(1+n)1nt1dt
= lim ⁡ n → + ∞ 1 n 1 1 + n =limlimits_{n→+∞}frac{frac1n}{frac1{1+n}} =n+lim1+n1n1
= 1 =1 =1

【BV1Ap4y1s7FP】积洛指洛
lim ⁡ n → + ∞ 1 + 2 + ⋯ + n n n limlimits_{n→+∞}frac{1+sqrt2+⋯+sqrt[n]n}n n+limn1+2 ++nn
= lim ⁡ n → + ∞ ∫ 1 n t t d t n =limlimits_{n→+∞}frac{∫_1^nsqrt[t]tmathrm dt}n =n+limn1ntt dt
= lim ⁡ n → + ∞ n 1 n =limlimits_{n→+∞}n^frac1n =n+limnn1
= lim ⁡ n → + ∞ e ln ⁡ n n =limlimits_{n→+∞}e^frac{ln n}n =n+limenlnn
= e 0 =e^0 =e0
= 1 =1 =1

【BV1HP4y1o7bx】积洛
lim ⁡ t → 1 − 1 − t ( 1 + t 1 2 + t 2 2 + t 3 2 + ⋯ ) limlimits_{t→1^-}sqrt{1-t}(1+t^{1^2}+t^{2^2}+t^{3^2}+⋯) t1lim1t (1+t12+t22+t32+)
= lim ⁡ t → 1 − 1 − t ∫ 0 + ∞ t x 2 d x =limlimits_{t→1^-}sqrt{1-t}∫_0^{+∞}t^{x^2}mathrm dx =t1lim1t 0+tx2dx
= lim ⁡ t → 1 − 1 − t ∫ 0 + ∞ e x 2 ln ⁡ t d x =limlimits_{t→1^-}sqrt{1-t}∫_0^{+∞}e^{x^2ln t}mathrm dx =t1lim1t 0+ex2lntdx
因为 ∫ 0 + ∞ e − x 2 d x = π 2 ∫_0^{+∞}e^{-x^2}mathrm dx=frac{sqrtπ}2 0+ex2dx=2π ,换元可得 ∫ 0 + ∞ e − k x 2 d x = π 2 1 k ∫_0^{+∞}e^{-kx^2}mathrm dx=frac{sqrtπ}2sqrtfrac1k 0+ekx2dx=2π k1
所以原式 = π 2 lim ⁡ t → 1 − 1 − t − ln ⁡ t =frac{sqrtπ}2sqrt{limlimits_{t→1^-}frac{1-t}{-ln t}} =2π t1limlnt1t
= π 2 lim ⁡ t → 1 − − 1 − 1 t =frac{sqrtπ}2sqrt{limlimits_{t→1^-}frac{-1}{-frac1t}} =2π t1limt11
= π 2 =frac{sqrtπ}2 =2π

【BV1KD4y1H7MQ】积
lim ⁡ n → + ∞ ( 1 4 n + 1 + 1 4 n + 2 + ⋯ + 1 4 n + 2 n ) limlimits_{n→+∞}(frac1{4n+1}+frac1{4n+2}+⋯+frac1{4n+2n}) n+lim(4n+11+4n+21++4n+2n1)
= lim ⁡ n → + ∞ 1 n ( 1 4 + 1 n + 1 4 + 2 n + ⋯ + 1 4 + 2 n n ) =limlimits_{n→+∞}frac1n(frac1{4+frac1n}+frac1{4+frac2n}+⋯+frac1{4+frac{2n}n}) =n+limn1(4+n11+4+n21++4+n2n1)
= ∫ 0 2 d x 4 + x =∫_0^2frac{mathrm dx}{4+x} =024+xdx
= [ ln ⁡ ( x + 4 ) ] 0 2 =[ln(x+4)]_0^2 =[ln(x+4)]02
= ln ⁡ 3 − ln ⁡ 2 =ln3-ln2 =ln3ln2

【BV1PU4y127bK】积洛
lim ⁡ n → + ∞ 1 k + 2 k + ⋯ + n k n k + 1 limlimits_{n→+∞}frac{1^k+2^k+⋯+n^k}{n^{k+1}} n+limnk+11k+2k++nk
= lim ⁡ n → + ∞ ∫ 1 t t k d t n k + 1 =limlimits_{n→+∞}frac{∫_1^tt^kmathrm dt}{n^{k+1}} =n+limnk+11ttkdt
= lim ⁡ n → + ∞ n k ( k + 1 ) n k =limlimits_{n→+∞}frac{n^k}{(k+1)n^k} =n+lim(k+1)nknk
= 1 k + 1 =frac1{k+1} =k+11,且k>-1时收敛

【BV1Ty4y17754】积
lim ⁡ n → + ∞ 1 + 2 + ⋯ + n n ( 1 + 2 + ⋯ + n ) limlimits_{n→+∞}frac{sqrt1+sqrt2+⋯+sqrt n}{sqrt{n(1+2+⋯+n)}} n+limn(1+2++n) 1 +2 ++n
= lim ⁡ n → + ∞ ∫ 1 n t d t n ∫ 0 n t d t =limlimits_{n→+∞}frac{∫_1^nsqrt tmathrm dt}{sqrt nsqrt{∫_0^ntmathrm dt}} =n+limn 0ntdt 1nt dt
= lim ⁡ n → + ∞ 2 3 n 3 2 n 1 2 n 2 =limlimits_{n→+∞}frac{frac23n^frac32}{sqrt nsqrt{frac12n^2}} =n+limn 21n2 32n23
= 2 3 2 =frac23sqrt2 =322

连乘

【BV1aT41117ms】指积
lim ⁡ n → + ∞ ( n + 1 ) ( n + 2 ) ⋯ 2 n n n limlimits_{n→+∞}frac{sqrt[n]{(n+1)(n+2)⋯2n}}n n+limnn(n+1)(n+2)2n
= lim ⁡ n → + ∞ e 1 n ln ⁡ ( n + 1 ) + 1 n ln ⁡ ( n + 2 ) + ⋯ + 1 n ln ⁡ 2 n − ln ⁡ n =limlimits_{n→+∞}e^{frac1nln(n+1)+frac1nln(n+2)+⋯+frac1nln2n-ln n} =n+limen1ln(n+1)+n1ln(n+2)++n1ln2nlnn
= lim ⁡ n → + ∞ e 1 n ln ⁡ ( 1 + 1 n ) + 1 n ln ⁡ ( 1 + 2 n ) + ⋯ + 1 n ln ⁡ ( 1 + n n ) =limlimits_{n→+∞}e^{frac1nln(1+frac1n)+frac1nln(1+frac2n)+⋯ +frac1nln(1+frac nn)} =n+limen1ln(1+n1)+n1ln(1+n2)++n1ln(1+nn)
= e ∫ 0 1 ln ⁡ ( 1 + x ) d x =e^{∫_0^1ln(1+x)mathrm dx} =e01ln(1+x)dx
= e [ ( 1 + x ) ln ⁡ ( 1 + x ) − x ] 0 1 =e^{[(1+x)ln(1+x)-x]^1_0} =e[(1+x)ln(1+x)x]01
= 4 e =frac4e =e4

【BV1ch411D7pT】
lim ⁡ x → 0 cos ⁡ x 2 cos ⁡ x 2 2 ⋯ cos ⁡ x 2 n limlimits_{x→0}cosfrac x2cosfrac x{2^2}⋯cosfrac x{2^n} x0limcos2xcos22xcos2nx
= lim ⁡ x → 0 cos ⁡ x 2 cos ⁡ x 2 2 ⋯ cos ⁡ x 2 n ⋅ sin ⁡ x 2 n ⋅ 1 sin ⁡ x 2 n =limlimits_{x→0}cosfrac x2cosfrac x{2^2}⋯cosfrac x{2^n}·sinfrac x{2^n}·frac1{sinfrac x{2^n}} =x0limcos2xcos22xcos2nxsin2nxsin2nx1
= 1 2 lim ⁡ x → 0 cos ⁡ x 2 cos ⁡ x 2 2 ⋯ cos ⁡ x 2 n − 1 ⋅ sin ⁡ x 2 n − 1 ⋅ 1 sin ⁡ x 2 n =frac12limlimits_{x→0}cosfrac x2cosfrac x{2^2}⋯cosfrac x{2^{n-1}}·sinfrac x{2^{n-1}}·frac1{sinfrac x{2^n}} =21x0limcos2xcos22xcos2n1xsin2n1xsin2nx1
= 1 2 2 lim ⁡ x → 0 cos ⁡ x 2 cos ⁡ x 2 2 ⋯ cos ⁡ x 2 n − 2 ⋅ sin ⁡ x 2 n − 2 ⋅ 1 sin ⁡ x 2 n =frac1{2^2}limlimits_{x→0}cosfrac x2cosfrac x{2^2}⋯cosfrac x{2^{n-2}}·sinfrac x{2^{n-2}}·frac1{sinfrac x{2^n}} =221x0limcos2xcos22xcos2n2xsin2n2xsin2nx1
= ⋯ =⋯ =
= 1 2 n lim ⁡ x → 0 sin ⁡ x sin ⁡ x 2 n =frac1{2^n}limlimits_{x→0}frac{sin x}{sinfrac x{2^n}} =2n1x0limsin2nxsinx
= 1 2 n ⋅ 2 n =frac1{2^n}·2^n =2n12n
= 1 =1 =1

【BV1ho4y1D7fS】指积
lim ⁡ n → + ∞ n ! n n limlimits_{n→+∞}frac{sqrt[n]{n!}}n n+limnnn!
= lim ⁡ n → + ∞ e 1 n ln ⁡ n ! − ln ⁡ n =limlimits_{n→+∞}e^{frac1nln n!-ln n} =n+limen1lnn!lnn
= lim ⁡ n → + ∞ e 1 n ( ln ⁡ 1 n + ln ⁡ 2 n + ⋯ + ln ⁡ n n ) =limlimits_{n→+∞}e^{frac1n(lnfrac1n+lnfrac2n+⋯+lnfrac nn)} =n+limen1(lnn1+lnn2++lnnn)
= e ∫ 0 1 ln ⁡ x d x =e^{∫_0^1ln xmathrm dx} =e01lnxdx
= 1 e =frac1e =e1

【BV1hA411o7co】指积洛
lim ⁡ n → + ∞ ( n 2 + 1 ) ( n 2 + 2 ) ⋯ ( n 2 + n ) ( n 2 − 1 ) ( n 2 − 2 ) ⋯ ( n 2 − n ) limlimits_{n→+∞}frac{(n^2+1)(n^2+2)⋯(n^2+n)}{(n^2-1)(n^2-2)⋯(n^2-n)} n+lim(n21)(n22)(n2n)(n2+1)(n2+2)(n2+n)
= lim ⁡ n → + ∞ e n [ 1 n ln ⁡ ( n + 1 n n − 1 n ) + 1 n ln ⁡ ( n + 2 n n − 2 n ) + ⋯ + 1 n ln ⁡ ( n + n n n − n n ) ] =limlimits_{n→+∞}e^{n[frac1nln(frac{n+frac1n}{n-frac1n})+frac1nln(frac{n+frac2n}{n-frac2n})+⋯+frac1nln(frac{n+frac nn}{n-frac nn})]} =n+limen[n1ln(nn1n+n1)+n1ln(nn2n+n2)++n1ln(nnnn+nn)]
= lim ⁡ n → + ∞ e n ∫ 0 1 ln ⁡ ( n + t n − t ) d t =limlimits_{n→+∞}e^{n∫_0^1ln(frac{n+t}{n-t})mathrm dt} =n+limen01ln(ntn+t)dt
= lim ⁡ n → + ∞ e n [ ( n + t ) ln ⁡ ( n + t ) + ( n − t ) ln ⁡ ( n − t ) ] 0 1 =limlimits_{n→+∞}e^{n[(n+t)ln(n+t)+(n-t)ln(n-t)]_0^1} =n+limen[(n+t)ln(n+t)+(nt)ln(nt)]01
= lim ⁡ n → + ∞ e n 2 ln ⁡ n 2 − 1 n 2 + n ln ⁡ n + 1 n − 1 =limlimits_{n→+∞}e^{n^2lnfrac{n^2-1}{n^2}+nlnfrac{n+1}{n-1}} =n+limen2lnn2n21+nlnn1n+1
= lim ⁡ n → 0 + e ln ⁡ ( 1 − n 2 ) n 2 + ln ⁡ ( 1 + n ) − ln ⁡ ( 1 − n ) n =limlimits_{n→0^+}e^{frac{ln(1-n^2)}{n^2}+frac{ln(1+n)-ln(1-n)}n} =n0+limen2ln(1n2)+nln(1+n)ln(1n)
= lim ⁡ n → 0 + e − 2 n 2 n ( 1 − n 2 ) + 1 1 + n + 1 1 − n =limlimits_{n→0^+}e^{frac{-2n}{2n(1-n^2)}+frac1{1+n}+frac1{1-n}} =n0+lime2n(1n2)2n+1+n1+1n1
= e =e =e

【BV1Pg4y1i7pv】指倒展
lim ⁡ x → ∞ ( x n ( x − 1 ) ( x − 2 ) ⋯ ( x − n ) ) 2 x limlimits_{x→∞}(frac{x^n}{(x-1)(x-2)⋯(x-n)})^{2x} xlim((x1)(x2)(xn)xn)2x
= lim ⁡ x → ∞ e 2 x [ n ln ⁡ x − ln ⁡ ( x − 1 ) − ln ⁡ ( x − 2 ) − ⋯ − ln ⁡ ( x − n ) ] =limlimits_{x→∞}e^{2x[nln x-ln(x-1)-ln(x-2)-⋯-ln(x-n)]} =xlime2x[nlnxln(x1)ln(x2)ln(xn)]
= lim ⁡ x → ∞ e − 2 x [ ln ⁡ ( 1 − 1 x ) + ln ⁡ ( 1 − 2 x ) + ⋯ + ln ⁡ ( 1 − n x ) ] =limlimits_{x→∞}e^{-2x[ln(1-frac1x)+ln(1-frac2x)+⋯+ln(1-frac nx)]} =xlime2x[ln(1x1)+ln(1x2)++ln(1xn)]
= lim ⁡ x → 0 e − 2 x [ ln ⁡ ( 1 − x ) + ln ⁡ ( 1 − 2 x ) + ⋯ + ln ⁡ ( 1 − n x ) ] =limlimits_{x→0}e^{-frac2x[ln(1-x)+ln(1-2x)+⋯+ln(1-nx)]} =x0limex2[ln(1x)+ln(12x)++ln(1nx)]
= lim ⁡ x → 0 e − 2 x ( − x − 2 x − ⋯ − n x + o ( x ) ) =limlimits_{x→0}e^{-frac2x(-x-2x-⋯-nx+o(x))} =x0limex2(x2xnx+o(x))
= lim ⁡ x → 0 e n 2 + n =limlimits_{x→0}e^{n^2+n} =x0limen2+n

取整

【BV1pM411t7Y1】
lim ⁡ x → 0 x [ 1 x ] limlimits_{x→0}x[frac1x] x0limx[x1]
= lim ⁡ x → 0 x ( 1 x + C ) , C ∈ R =limlimits_{x→0}x(frac1x+C),C∈R =x0limx(x1+C),CR
= lim ⁡ x → 0 1 + C x , C ∈ R =limlimits_{x→0}1+Cx,C∈R =x0lim1+Cx,CR
= 1 =1 =1

最后

以上就是香蕉黑米为你收集整理的求极限例题大赏:数列和/积连加连乘取整的全部内容,希望文章能够帮你解决求极限例题大赏:数列和/积连加连乘取整所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(49)

评论列表共有 0 条评论

立即
投稿
返回
顶部