概述
所有的算法可以大概分为以下三种类型:
1.贪婪算法(greedy
algorithm)
该算法每一步所做的都是当前最紧急、最有利或者最满意的,不会考虑所做的后果,直到完成任务。这种算法的稳定性很差,很容易带来严重后果,但是,如果方向正确,那该算法也是高效的。
2.分治算法(divide-and-conquer
algorithm)
该算法就是将一个大问题分解成许多小问题,然后单独处理这些小问题,最终将结果结合起来形成对整个问题的解决方案。当子问题和总问题类型类似时,该算法很有效,递归就属于该算法。
3.回溯算法(backtracking
algorithm)
也可以称之排除算法,一种组织好的试错法。某一点,如果有多个选择,则任意选择一个,如果不能解决问题则退回选择另一个,直到找到正确的选择。这种算法的效率很低,除非运气好。比如迷宫就可以使用这种算法来实现。
实际上,我们对算法的效率高低评价,主要是在时间和内存之间权衡。根据实际情况来决定,比如有的客户不在乎耗用的内存是多少,他在乎的是执行的速度,那么一个用内存来换取更高执行时间的算法可能是更好的。同样,有的客户可能不想耗用过多内存同时对速度也不是特别要求。不管怎样,效率是算法的主要特性,因此关注算法的性能尤其重要!标准的测量方法就是找出一个函数(增长率),将执行时间表示为输入大小的函数。选择处理的输入大小来说增长率比较低的算法!
计算增长率的方式:
1.测量执行时间
通过System.currentTimeMillis()方法来测试
部分代码:
//
测量执行时间
static void calculate_time(){
long test_data =
1000000;
long start_time = 0;
long end_time = 0;
int
testVar = 0;
for (int i = 1; i <= 5; i++){
//
算法执行前的当前时间
start_time = System.currentTimeMillis();
for(int j = 1;
j <= test_data; j++){
testVar++;
testVar--;
}
//
算法执行后的当前时间
end_time = System.currentTimeMillis();
//
打印总共执行时间
System.out.println("test_data = " + test_data + "n"
+
"Time in msec = " + (end_time - start_time) +
"ms");
//环后将循环次数加倍
test_data = test_data *
2;
}
}
以上代码将分别计算出1000000、2000000、4000000...次的循环时间。
缺点:
Ø
不同的平台执行的时间不同
Ø
有些算法随着输入数据的加大,测试时间会变得不切实际!
2.指令计数
指令---指编写算法的代码.对一个算法的实现代码计算执行指令次数。两种类型指令:不管输入大小,执行次数永远不变;执行次数随着输入大小改变而改变。一般,我们主要测试后一种指令。
例:计算指令执行次数
static
void calculate_instruction(){
long test_data = 1000;
int work =
0;
for (int i = 1; i <= 5; i++){
int count =
0;
for (int k = 1; k <= test_data; k++){
for(int j = 1; j <=
test_data; j++){
//
指令执行次数计数
count++;
work++;
work--;
}
}
System.out.println("test_data
= " + test_data + "n" +
"Instr. count = " + count
);
test_data = test_data *
2;
}
}
3.代数计算
代码1:
long end_time =
0;t1
int testVar = 0;t2
for (int i = 1; i <= test_data; i++){
t3
testVar++;t4
testVar--;t4
}
假设t1 ---
t4分别代表每条语句的执行时间,那么,以上代码的总执行时间为:t1 + t2 + n(t3 + 2t4).其中n =
test_data,当test_data增大时,t1和t2可以忽略不计,也就是说,对于很大的n,执行时间可以近似于:n(t3 +
2t4)
4.测量内存使用率
一个算法中包含的对象和引用的数目,越多则内存使用越高,反之越低。
比较增长率:
1.代数比较法
条件1:c≦
f(n)/g(n) ≦ d
(其中c和d为正常数,n代表输入大小)
当满足以上条件1时,则f(n)和g(n)具备相同的增长率,或者两函数复杂度的阶相同!
如:f(n)
= n + 100 和 g(n) = 0.1n + 10两函数就具备相同的增长率。
条件2:
当n增大时,f(n)/g(n)趋向于0
当满足此条件2时,则该两个增长函数有不同的增长率。
比如:f(n) = 10000n +
20000 和 g(n) = n?2 + n + 1
。请大家比较以上两函数增长率是否一样,如果不一样,谁的增长率小?
2.大O表示法
如果f的增长率小于或者等于g的增长率,则我们可以用如下的大O表示法:
f
= O(g)
O表示on the order of
将代码1的代数增长率函数用大O表达式如下:
f(n) = t1 +
t2 + n(t3 + 2t4)
= a1*n + a
= O(n)
其中a1 = t3 + 2t4; a = t1
+ t2
3.最佳、最差、平均性能
对每一个算法不能只考虑单一的增长率,而应该给出最佳、最差、平均的增长率函数
最后
以上就是干净季节为你收集整理的java 类试算法_java算法的类型的全部内容,希望文章能够帮你解决java 类试算法_java算法的类型所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复