我是靠谱客的博主 玩命时光,最近开发中收集的这篇文章主要介绍技巧---数学分析1:变换积分次序FormulaExplanation,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

Formula

∫ 0 x [ ∫ 0 u φ ( t ) d t ] d u = ∫ 0 x [ ∫ t x φ ( t ) d u ] d t int_0^x left[ int_0^u varphi(t)dtright] du = int_0^x left[ int_t^x varphi(t)duright] dt 0x[0uφ(t)dt]du=0x[txφ(t)du]dt

Explanation

As for double integrals

Maybe we can understand the double integrals from the perspective of code, and the above formula are equivalent to the following two sum.

sum1 = 0
for u in 0:d1:x:
for t in 0:d2:u:
sum1 += varphi(t)*d1*d2
print sum1
sum2 = 0
for t in 0:d1:x:
for u in t:d2:x:
sum2 += varphi(t)*d1*d2
print sum2

这里写图片描述

First code:
u=0 at first, and after

	for t in 0:d2:u:
sum1 += varphi(t)*d1*d2

sum1 = 0;
Then u become a little bigger, we do this cycle again. Finally, we can get the the volume accumulated by φ ( t ) varphi(t) φ(t) on this triangle.

Second code:
And yet, we can also treat this idea from another angle. In the first place, t=0, and we execute:

	for u in t:d2:x:
sum2 += varphi(t)*d1*d2

After t increase, we do this cycle again and again, we can also get the the volume accumulated by φ ( t ) varphi(t) φ(t) on this triangle.

That’s all.
#Purpose
How does this artifice work in reality?

I don’t know if you notice that or not, but

sum2 = 0
for t in 0:d1:x :
for u in t:d2:x :
sum2 += varphi(t)*d1*d2
print sum2

is equivalent to

sum2 = 0
for t in 0:d1:x :
sum2 += varphi(t)*d1*(x-t)
print sum2

The reduction in the number of dimensions reduces the number of cycles. That’s why it’s useful.

∫ 0 x [ ∫ 0 u φ ( t ) d t ] d u = ∫ 0 x [ ∫ t x φ ( t ) d u ] d t = ∫ 0 x [ ( x − t ) φ ( t ) ] d t int_0^x left[ int_0^u varphi(t)dtright] du = int_0^x left[ int_t^x varphi(t)duright] dt =int_0^x left[ (x-t) varphi(t)right] dt 0x[0uφ(t)dt]du=0x[txφ(t)du]dt=0x[(xt)φ(t)]dt

最后

以上就是玩命时光为你收集整理的技巧---数学分析1:变换积分次序FormulaExplanation的全部内容,希望文章能够帮你解决技巧---数学分析1:变换积分次序FormulaExplanation所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(68)

评论列表共有 0 条评论

立即
投稿
返回
顶部