focal loss和OHEM(on-line hard example mining)如何应用到faster RCNN中
在物体检测问题中,主要分为两类检测器模型:one stage detector(SSD,YOLO系列,retinanet)和two stage detector(faster RCNN系列及其改进模型),然而无论是一个阶段的检测器还是两个阶段的检测器,都使用到了anchor机制,即在特征图上密集地画anchor boxes,根据先验知识设定的IOU阈值将这些anchor划分为正样本和负样本,再对于正样本anchor boxes进行位置编码,从而得到训练检测器所需要的ground truth la