神经网络与深度学习---验证集(测试集)准确率高于训练集准确率的原因
1.数据集太小,这样会导致数据集切分的时候不均匀,也就是说训练集和测试集的分布不均匀,如果模型能够正确地捕捉到数据内部的分布模式的话,就有可能造成训练集的内部方差大于验证集,会造成训练集的误差更大,这个时候就需要重新划分数据集,使其分布一样。2.模型正则化过多,比如训练时dropout过多,和验证时的模型相差较大,验证时是不会有dropout的。Dropout能基本上确保测试集的准确性最好,优于训练集的准确性。Dropout迫使神经网络成为一个非常大的弱分类器集合,这就意味着,一个单独的分类器没