机器学习算法:UMAP 深入理解
导读降维是机器学习从业者可视化和理解大型高维数据集的常用方法。最广泛使用的可视化技术之一是 t-SNE[1],但它的性能受到数据集规模的影响,并且正确使用它可能需要一定学习成本。UMAP[2] 是 McInnes 等人开发的新算法。与t-SNE相比,它具有许多优势,最显着的是提高了计算速度并更好地保留了数据的全局结构。在本文[3]中,我们将了解UMAP背后的理论,以便更好地了解该算法的工作原理、如何正确有效地使用它,以及与t-SNE进行比较,它的性能如何。UMAP projection那么,UM