标准化,或均值去除和方差缩放
标准化,或均值去除和方差缩放Featurize链接数据集的标准化是许多机器学习任务的共同要求,如果单一特征看起来不像标准正态分布(均值为零且单位方差为高斯),模型可能会出现表现不佳的情况。在实践中,我们经常忽略数据的分布,只是通过除以每个特征的平均值来转换数据以使其居中,然后通过将极值特征除以其标准差来对其进行缩放。机器学习许多算法的目标函数(例如支持向量机的 RBF 核或线性模型的 l1 和 l2 正则化器)都假设所有特征都以零为中心并且具有相同顺序的方差。如果一个特征的方差比其他特征大几个数